Bayesian System Identification and Response Predictions Robust to Modeling Uncertainty

James L. Beck
George W. Housner Professor of Engineering & Applied Science
Department of Mechanical & Civil Engineering
Department of Computing & Mathematical Sciences
California Institute of Technology
www.its.caltech.edu/~jimbeck/
Focus of Presentation

Performance prediction using a computational model for a dynamic system treating both excitation and modeling uncertainties

- Long history in structural reliability of treating excitation uncertainty under wind and earthquakes (random vibrations, stochastic dynamics)
- Rigorous treatment of modeling uncertainty is only recent

Modeling Uncertainty

Requires a Bayesian probability approach where the probability of a model is a meaningful concept

- Huge increase in the development and use of Bayesian methods in the last decade or so
- Allows analysis that is robust to modeling uncertainties, both prior (e.g. design based on reliability or life-cycle cost optimization), & posterior (e.g. system ID, structural health monitoring, robust control, state &/or parameter estimation)
Outline of Presentation

- **Introduction**
 - Probability logic as the foundation for Bayesian probability
 - Stochastic model classes & stochastic embedding
 - Bayesian system identification with Ex. 1
 - Prior & posterior robust stochastic analyses with Ex. 2
 - Posterior model class assessment & selection with Ex. 3
 - Concluding remarks
Predicting system performance under excitation and modeling uncertainty

Prior analysis: During stochastic design, use probability models to predict system performance, treating uncertainties in input, system modeling and output.

Posterior analysis: During operation, use sensor data to update these probability models and their performance predictions.
System performance measure in the presence of uncertainty: Failure probability

- **Failure** = any one component of \(y(t) = [y_1(t), ..., y_M(t)] \in \mathbb{R}^M \) exceeds its specified threshold within a specified duration \([0, T]\):

\[
\text{Failure} = \text{any one component of } y(t) = [y_1(t), ..., y_M(t)] \in \mathbb{R}^M \text{ exceeds its specified threshold within a specified duration } [0, T] :
\]

- Discretize time so \(t_n = (n-1) \Delta t \) and **failure probability**:

\[
P_F = \int_F p(Y_N) dY_N = \int_I (Y_N) p(Y_N) dY_N, \quad Y_N = [y(t_1), ..., y(t_N)] \in \mathbb{R}^{MN}
\]

\[
F = \{Y_N: |y_i(t_n)| > b_i \text{ for some } i = 1, ..., M \& n = 1, ..., N = \text{Int}[T/\Delta t]+1 \}
\]
Interpretation of probability

- The axioms of probability are well-established but after three centuries, the meaning of probability is still in dispute.
- The interpretation is important in applications to real systems and phenomenon – it governs:
 - perceived domain of its applicability;
 e.g. is the probability of a model meaningful?
 - understanding of the results of stochastic analysis;
 e.g. what does the failure probability mean? (Is it an inherent property of the system, or a property of what we know about the system and its future excitation?)
Two prevailing interpretations of probability: Frequentist & Bayesian

Frequentist

Defn: Probability is the relative frequency of occurrence of an “inherently random” event in the “long run”

1) Probability distributions are *inherent* properties of “random” phenomena
2) Limited scope, e.g. no meaning for the probability of a model
3) “Inherent randomness” is assumed but cannot be proved

Bayesian

Defn: Probability is a measure of the plausibility of a statement based on specified information

1) Probability distributions represent states of *plausible knowledge* about systems and phenomena, not inherent properties of them
2) Probability of a model is a measure of its plausibility relative to other models in a set
3) Pragmatically quantifies uncertainty due to missing information without any claim that this is due to nature’s “inherent randomness”
Frequentist vs Bayesian

Is it “inherent randomness” or does it just “look random”?
(a) Data-stream from a random number generator “looks random” but it is deterministic if the algorithm and initial condition (“seed”) are known;
(b) The outcome of coin tosses “looks random” but it is a deterministic mechanics problem if the initial conditions are known

Philosophical question
Is uncertainty about predicting any phenomenon because of:
(a) an inherent “randomness” property of the phenomenon (producing aleatory/aleatoric uncertainty), or
(b) due to our limited capacity to collect or understand the relevant information (producing epistemic uncertainty due to missing information)?

- E.T. Jaynes’ answer (2003): (a) is an example of the Mind-Projection Fallacy:
 Our models of reality are confused with reality, or more specifically here: Our uncertainty is projected onto nature as its inherent property
Early quotes regarding probability theory

- **Pierre Simon Laplace (1814):**
 Probability theory is nothing but *common sense* reduced to calculation [Supplement to his Analytical Theory of Probabilities, 1812]

- **James Clerk Maxwell (1850):**
 The *true logic* of this world is the calculus of probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man’s mind
A connection between Bayesian probability and relative frequency

Take a \textit{binomial} probability model for an uncertain event A with model parameter $\theta = \text{probability of event } A \text{ occurring}.$

If all values of θ are equally plausible a priori, then the \textit{most probable value} a posteriori of parameter θ is:

$\hat{\theta} = \text{relative frequency of event } A \text{ in any finite number of trials}$

[The full posterior distribution is a beta PDF]
Outline of Presentation

- Introduction
- **Probability logic as the foundation for Bayesian probability**
 - Stochastic model classes & stochastic embedding
 - Bayesian system identification with Ex. 1
 - Prior & posterior robust stochastic analyses with Ex. 2
 - Posterior model class assessment & selection with Ex. 3
- Concluding remarks
Probability logic: Rigorous foundation for Bayesian probability

- **Extends binary Boolean logic** to a multi-valued logic for quantification of plausible reasoning under incomplete information.

- **Key idea**: Probability $P[b|a] = \text{measure of plausibility}$ of statement b based on the information in statement a.

 $[P[b|a]=1 \text{ if } a \text{ is true implies } b \text{ is true}; =0 \text{ if } a \text{ implies } b \text{ is false}]$

- **Seminal work on foundations by R.T. Cox**:
 “Probability, Frequency and Reasonable Expectation”, Amer. J. Physics 1946
 The Algebra of Probable Inference, Johns Hopkins Press 1961

- **Treatise on theory and applications by E.T. Jaynes**:
Probability logic axioms

- By extending Boolean logic to incomplete information, R.T. Cox derived a minimal set of axioms for probability logic (1946, 1961):

 For any statements \(a, b \) and \(c \),

 \[
 \begin{align*}
 \text{P1: } P[b \mid a] & \geq 0 & \quad \text{[By convention]} \\
 \text{P2: } P[\sim b \mid a] & = 1 - P[b \mid a] & \quad \text{[Negation Function]} \\
 \text{P3: } P[c \& b \mid a] & = P[c \mid b \& a]P[b \mid a] & \quad \text{[Conjunction Function]}
 \end{align*}
 \]

- These axioms and De Morgan’s Law of Logic imply Disjunction Function:

 \[
 P[c \text{ or } b \mid a] = P[c \mid a] + P[b \mid a] - P[c \& b \mid a]
 \]

- They imply Kolmogorov’s statement of probability axioms (1933) for probability measure \(P(A) \), which has no built-in meaning, by using:

 If \(x \) = uncertain-valued variable with possible values in set \(X \), then:

 \[
 P(A) = P[x \in A \mid M], \quad A \subset X \quad (M \text{ specifies probability model for } x)
 \]
Outline of Presentation

- Introduction
- Probability logic as the foundation for Bayesian probability
- **Stochastic model classes & stochastic embedding**
 - Bayesian system identification with Ex. 1
 - Prior & posterior robust stochastic analyses with Ex. 2
 - Posterior model class assessment & selection with Ex. 3
- Concluding remarks
Fundamental concept for treating system modeling uncertainty

- **Stochastic model class** \mathcal{M} defined by two steps:
 1. Choose set of stochastic I/O (forward) models for prediction:
 \[\{ p(Y_n \mid U_n, \theta, \mathcal{M}) : \theta \in \Theta \subset \mathbb{R}^{N_p} \} \]
 $U_n, Y_n =$ input & output time histories up to any time t_n
 $\theta =$ uncertain model parameters
 e.g. use stochastic embedding of a parameterized deterministic I/O model
 2. Choose PDF $p(\theta \mid \mathcal{M})$ (prior) over this set that expresses the initial relative plausibility of each stochastic model in (1)

- Model class \mathcal{M} treats modeling uncertainty, both “parametric” and “non-parametric” (from “unmodeled dynamics”)

- If system data $\mathcal{D}_N = \{ \hat{Y}_N, \hat{U}_N \}$ is available, then Bayes’ Theorem using (1) and (2) gives updated PDF (posterior):
 \[p(\theta \mid \mathcal{D}_N, \mathcal{M}) \propto p(\hat{Y}_N \mid \hat{U}_N, \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \]
Developing stochastic I/O models for dynamic systems

- **General strategy:** Develop a probability model for stochastic predictions of the system output *conditional* on its input and model parameters θ:

$$ p(Y_n | U_n, \theta, \mathcal{M}) $$

\[u_k \in \mathbb{R}^{N_I} \] Given Inputs \rightarrow \text{Actual System} \rightarrow \text{Uncertain Outputs} \[y_k \in \mathbb{R}^{N_O} \]

where discrete time histories for N_o predicted outputs and N_I corresponding inputs up to any time t_n are denoted by:

$$ Y_n = [y_k : k = 1, \ldots, n] \in \mathbb{R}^{nN_O} $$

$$ U_n = [u_k : k = 1, \ldots, n] \in \mathbb{R}^{nN_I} $$

(possibly derived from continuous-time stochastic models)
Developing stochastic I/O models by stochastic embedding: Method 1

- **Stochastic embedding**: Start with deterministic I/O model of a dynamic system giving $q_n(U_n, \theta), \theta \in \Theta \subseteq R^{N_p}$

 $u_n \in R^{N_I} \xrightarrow{\text{Input}} \text{System Model } \theta \xrightarrow{\text{Output}} q_n \in R^{N_o}$

- **Uncertain output prediction error** introduced by:

 $$v_n = y_n - q_n(U_n, \theta)$$

- $p(Y_n | U_n, \theta, \sigma)$ from prob. model for prediction-error time history e.g. take prediction errors as zero-mean Gaussian white-noise (maximum entropy probability model) so system output is i.i.d.

 $$y_n \sim \mathcal{N}(q_n(U_n, \theta), \Sigma(\sigma))$$ at each time t_n
Developing stochastic I/O models by stochastic embedding: Method 2

- **Stochastic embedding of state-space models:** Start with deterministic state-space model of a dynamic system giving $q_n(U_n, \theta)$ for $\theta \in \Theta \subset \mathbb{R}^N$ in terms of a state evolution eqn:

$$
\tilde{x}_n = F(\tilde{x}_{n-1}, u_{n-1}, \theta) \\
q_n = H(\tilde{x}_n, u_n, \theta)
$$

- **Uncertain state and output prediction errors** (from “unmodeled dynamics”) introduced by:

$$
x_n = F(x_{n-1}, u_{n-1}, \theta) + w_n \quad \& \quad y_n = H(x_n, u_n, \theta) + v_n
$$

- $p(Y_n | U_n, \theta)$ defined by probability models for missing information, i.e. initial state x_0 and time histories of uncertain state and output prediction errors, w_n and v_n (use maximum entropy PDFs)
Outline of Presentation

- Introduction
- Probability logic as the foundation for Bayesian probability
- Stochastic model classes & stochastic embedding
- **Bayesian system identification with Ex. 1**
- Prior & posterior robust stochastic analyses with Ex. 2
- Posterior model class assessment & selection with Ex. 3
- Concluding remarks
System identification: Typical approach

Goal: Use system I/O data \(\mathcal{D} \) to develop a model to represent I/O behavior of a system

Typical Approach:
Propose a deterministic model with uncertain parameter vector \(\theta \in \Theta \) then **estimate** its value by using data \(\mathcal{D} \)
e.g. least-squares output-error, maximum likelihood or maximum a posteriori (MAP) estimates
System identification: Typical approach

- **Problem #1**: No model is expected to exactly represent system I/O behavior – so no true parameter values to estimate!

- **Problem #2**: Parameter estimates are often **non-unique** (model is **unidentifiable** based on data D) – fixing some parameter values to make unique estimates for the others may produce biased predictions

- **Problem #3**: Every model will have uncertain **prediction errors** (e.g. “unmodeled dynamics”) – how can we quantify this uncertainty?

- **Resolution**: Use **Bayesian system identification**
Bayesian system identification

- System ID for dynamic systems is viewed as inference about plausible system models based on data - not a quest for the “true” model or parameter values.

- Provides a rigorous stochastic framework for quantifying modeling uncertainty based only on probability axioms and probability models defined by stochastic model classes.

- Instead of parameter estimation, system data is used to do Bayesian updating of the probability of each stochastic I/O model in the parameterized set.
Example 1: Bayesian system ID using Masing hysteretic structural models

- **Three-story building:**
 - Input is strong ground motion record from 1994 Northridge Earthquake, Los Angeles (10 s with time-step=0.02 s)
 - Masing hysteretic model for inter-story force versus deformation used to generate synthetic sensor data
 - Output is noisy accelerations at each floor (20% RMS noise added to “simulate” modeling errors & measurement noise)

[From Muto & Beck: J. Vibration & Control 2008]
Stochastic model class \mathcal{M} for system ID using inelastic seismic response

- **Stochastic I/O model:** From stochastic embedding of Masing shear building model (Method 1):

 \[\mathbf{M} \ddot{\mathbf{x}}(t) + \mathbf{C}(\theta) \dot{\mathbf{x}}(t) + \mathbf{F}(t, \mathbf{x} | \theta) = -\mathbf{M} \mathbf{b} u(t) \]

 Output, $\mathbf{y}_n = \dot{x}(t_n) + e_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_3)$

 Model class \mathcal{M} has 12 parameters
 (3 per story for force-deformation, 2 Rayleigh damping & σ^2, a common acceleration prediction-error variance)

- **Prior PDFs:** Plots show independent lognormal prior PDFs on hysteretic parameters (c.o.v. of 0.5) and exact values (dashed) used to generate data. Uniform priors on Rayleigh damping parameters & prediction-error variance (not shown)
Bayesian updating for model class \mathcal{M}

[T.Bayes 1763; P.S.Laplace 1774,1812; H.Jeffreys 1939]

- Given data \mathcal{D}, use Bayes’ Theorem to update initial plausibility of each model:

$$p(\theta \mid \mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M})}{p(\mathcal{D} \mid \mathcal{M})}$$

- Laplace’s method for large amount of data:
 Gaussian approximation of posterior PDF about MAP or MLE: $\mathcal{N}(\hat{\theta}, \Sigma(\hat{\theta}))$
 - challenging high-D optimization to find MAP/MLE parameter values
 - requires \mathcal{M} to be globally identifiable based on data \mathcal{D} (then MAP≈MLE)
 - covariance matrix $\Sigma(\hat{\theta})$ is the inverse of the negative of Hessian matrix of log posterior (for MAP) or log likelihood (for MLE)

- Markov Chain Monte Carlo methods now dominant: draw posterior samples using either Gibbs Sampler, Metropolis-Hastings algorithm, Hamiltonian/Hybrid MC, etc.
Multi-level MCMC sampling by annealing

Target PDF: \[\pi_m(\theta) \propto p^{\beta_m}(D|\theta,M)p(\theta|M) \text{ where } 0 = \beta_1 < \beta_2 < \ldots < \beta_M = 1 \]

Each population is 1000 samples of stiffness and strength parameters for third story

Projection of 12-dimensional samples generated by Metropolis algorithm at different levels of one run of TMCMC algorithm [Ching & Chen: JEM 2007] when updating using model class \(M \) (Repeated samples are indicated by size of markers)
Projection of 12-dimensional posterior samples from final level of TMCMC when updating using the model class. Last 2 slides show that model class is **unidentifiable** based on data.

Robust predictions based on all posterior samples should be used, not just for one parameter estimate; Laplace asymptotic approximation not applicable.
Outline of Presentation

- **Introduction**
 - Probability logic as the foundation for Bayesian probability
 - Stochastic model classes & stochastic embedding
 - Bayesian system identification with Ex. 1
- **Prior & posterior robust stochastic analyses with Ex. 2**
 - Posterior model class assessment & selection with Ex.3
- Concluding remarks
Robust stochastic system analysis

- Use the whole model class \mathcal{M} for robustness w.r.t. modeling uncertainties in the prediction of system performance:

- **Combine all stochastic predictions** $p(Y_n|U_n, \theta, \mathcal{M})$ for each $\theta \in \Theta$ weighted by their probability conditional on the available information (Theorem of Total Probability)

- **Prior robust analysis** uses weighting by prior PDF $p(\theta|\mathcal{M})$

- **Posterior robust analysis** uses weighting by posterior PDF $p(\theta|\mathcal{D}_N, \mathcal{M})$

- **Prior and posterior hyper-robust analyses** use multiple candidate model classes for a system, weighting each of their robust stochastic predictions by their prior and posterior probabilities, respectively (Bayesian model averaging)
Prior robust analysis for system design

Ingredients:

1. Stochastic model class \mathcal{M} defining set of I/O probability models \(\{ p(Y_n \mid U_n, \theta, \mathcal{M}) : \theta \in \Theta \} \) and prior \(p(\theta \mid \mathcal{M}) \) over set.

2. Stochastic input model \mathcal{U} defining PDF \(p(U_n \mid \mathcal{U}) \).

Prior robust failure probability (Total Probability Theorem):

Failure: output time-history Y_n up to time t_n lies in $F_n = \text{region of unacceptable performance}$.

\[
P_{F} = P[Y_n \in F_n \mid \mathcal{U}, \mathcal{M}] = \int I(Y_n \in F_n) p(Y_n \mid U_n, \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) p(U_n \mid \mathcal{U}) dY_n d\theta dU_n
\]

\[
= E[I(Y_n \in F_n) \mid \mathcal{U}, \mathcal{M}] \approx \frac{1}{K} \sum_{k=1}^{K} I(Y_n^{(k)} \in F_n)
\]

Evaluated by drawing K independent samples \((Y_n^{(k)}, U_n^{(k)}, \theta^{(k)}) \) (Monte Carlo Simulation), or if $P_{F} \ll 1$, use Subset Simulation or ISEE (Au & Beck: PEM 2001)
Posterior robust analysis for updated system performance predictions

- **Ingredients:**
 1. Stochastic model class \mathcal{M}
 2. Stochastic input model \mathcal{U} defining PDF $p(U_n | \mathcal{U})$
 3. System input and output data \mathcal{D}_N

- **Posterior robust failure probability** (Bayes Theorem and Total Probability Theorem):

 \[
 P[Y_n \in F_n | \mathcal{D}_N, \mathcal{U}, \mathcal{M}] = \int \int \int \mathbb{I}(Y_n \in F_n) p(Y_n | U_n, \theta, \mathcal{M}) p(\theta | \mathcal{D}_N, \mathcal{M}) p(U_n | \mathcal{U}) dY_n d\theta dU_n
 \]

 \[
 = \mathbb{E}[\mathbb{I}(Y_n \in F_n) | \mathcal{D}_N, \mathcal{U}, \mathcal{M}] \approx \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}(Y_{n}^{(k)} \in F_n)
 \]

 - Evaluated by drawing independent samples $(Y_{n}^{(k)}, U_{n}^{(k)}, \theta^{(k)})$ where posterior samples are generated by using MCMC simulation, e.g. multi-level methods such as TMCMC based on Metropolis-Hastings algorithm
Posterior robust analysis for updated system performance predictions

- **Laplace’s method for posterior robust analysis:**
 - Find optimal (MAP or MLE) parameter values $\hat{\theta}$, i.e. maximize posterior $p(\theta|D_{N},\mathcal{M})$ or likelihood $p(D_{N}|\theta,\mathcal{M})$, then to $O(\frac{1}{N})$ (Laplace’s asymptotic approximation):
 \[
P[Y_n \in F_n | D_N, \mathcal{U}, \mathcal{M}] \approx P[Y_n \in F_n | D_N, \mathcal{U}, \hat{\theta}, \mathcal{M}]
 = \int I(Y_n \in F_n) p(Y_n | U_n, \hat{\theta}, \mathcal{M}) p(U_n | \mathcal{U}) dY_n dU_n
 \]
 - Acceptable approximation only if \mathcal{M} is globally identifiable on D_N (MLE is unique) and large amount of data N (then MAP≈MLE)
 - Parameter estimation (i.e. using $\hat{\theta}$) is reasonable only in this case (otherwise spurious reductions in prediction uncertainty)
Example 2: Prior & posterior robust analysis using linear state-space models

- 4-story, 1/4-scale steel-frame ASCE SHM benchmark structure (JEM 2004)
- Data $D = 10$ s (time-step=0.004s) of noisy horizontal acceleration (output) & wind force (input) at each floor (synthetic data from 120-DOF 3D benchmark finite-element model)
Stochastic embedding of state-space model

- Stochastic linear state-space model of system:

 \[
 x_n = A(\theta_s)x_{n-1} + B(\theta_s)u_{n-1} + w_n, \quad n = 1, 2, ...
 \]

 \[
 y_n = C(\theta_s)x_n + D(\theta_s)u_n + v_n, \quad n = 0, 1, 2, ...
 \]

- System matrices \(A, B, C, D\): use discrete-time version of equations of motion for shear-building model with 4 DOF: State \(x_n\) = displacements & velocities, and output \(y_n\) = accelerations, at each floor

- **Stochastic embedding**: Apply Methods 1 and 2, so establish probability models for \(x_o, [w_1...w_n]\) & \([v_1...v_n]\) by using the Principle of Maximum Information Entropy: For all \(n\),

 \(w_n \sim N(0, \Sigma_w), \quad v_n \sim N(0, \Sigma_v), \quad \text{and} \quad x_o \sim N(0, \Sigma_o)\) and all are independent with diagonal covariance matrices \(\Sigma_w, \Sigma_v\) and \(\Sigma_o\)
First stochastic model class for benchmark structure

- **First model class** \mathcal{M}_1 [Stochastic embedding: Method 1]:
 \[\theta = 13 \text{ parameters, i.e. } \theta_s = 12 \text{ mass, stiffness & damping parameters, } \Sigma_o = 0 & \Sigma_w = 0 \text{ (no state prediction errors), } \Sigma_v = \sigma_{\text{acc}}^2 I_4 \text{ is 4x4 diagonal matrix with acceleration prediction-error variance the only parameter} \]

- **Prior PDF** $p(\theta|\mathcal{M}_1)$: θ_s — independent lognormals with median = nominal value, and coefficients of variation= 0.1, 0.3 & 0.5 for mass, stiffness and damping ratio parameters, respectively; $\sigma_{\text{acc}}^2 \sim \mathcal{U}[0, \sigma_{\text{max}}^2]$

- **Likelihood function** for \mathcal{M}_1: With $N=2500$ and $q_n(\theta_s) = \text{state-space model output for measured input & state prediction errors } v_n=0, w_n=0$:

\[
p(\hat{Y}_N | \hat{U}_N, \theta, \mathcal{M}_1) = \frac{1}{N_0(N+1)} \exp\left(-\frac{1}{2\sigma_{\text{acc}}^2} \sum_{n=0}^{N} [\hat{y}_n - q_n(\theta_s)]^T [\hat{y}_n - q_n(\theta_s)] \right)
\]
Second stochastic model class for benchmark structure

- **Second model class** M_2 [*Stochastic embedding: Method 2*]:
 $\theta = 15$ parameters – same as M_1 parameters except that Σ_w is 8x8 diagonal matrix with 2 prediction-error variance parameters, σ_{dis}^2 and σ_{vel}^2, respectively, for displacement and velocity states.

- **Prior PDF** $p(\theta| M_2)$: Physical parameters θ_s are independent lognormals as for M_1 and all 3 prediction-error variances are uniformly distributed and independent.
Second stochastic model class for benchmark structure

- **Likelihood function** for M_2:

\[
p(\hat{Y}_N | \hat{U}_N, \theta, M_2) = \frac{1}{N!} \prod_{n=0}^{N} \exp(-\frac{1}{2} \sum_{n=0}^{N} (\hat{y}_n - y_{n|n-1})^T S_{n|n-1}^{-1} (\hat{y}_n - y_{n|n-1}))
\]

$y_{n|n-1}(\theta) = \text{mean predicted acceleration (output) at each floor at time } n \text{ conditioned on observed output at all previous times}$

$S_{n|n-1}(\theta) = \text{covariance matrix of predicted output } y_n \text{ at time } n \text{ conditioned on observed output at all previous times}$

- These can be evaluated efficiently using the Kalman filter equations from Bayesian sequential state updating
 (e.g. S.H. Cheung: Caltech PhD Thesis in CE 2009
 Beck: Structural Control & Health Monitoring 2010)
Posterior samples from TMCMC for benchmark structure

- Posterior mean and coefficient of variation of model parameters

<table>
<thead>
<tr>
<th>Normalized Masses</th>
<th>M_2</th>
<th>M_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>0.97 (0.5%)</td>
<td>1.12 (0.9%)</td>
</tr>
<tr>
<td>θ_2</td>
<td>0.98 (0.5%)</td>
<td>1.13 (1.0%)</td>
</tr>
<tr>
<td>θ_3</td>
<td>0.99 (0.5%)</td>
<td>1.04 (0.9%)</td>
</tr>
<tr>
<td>θ_4</td>
<td>1.07 (0.5%)</td>
<td>1.21 (1.0%)</td>
</tr>
<tr>
<td>θ_5</td>
<td>0.76 (0.7%)</td>
<td>0.81 (0.9%)</td>
</tr>
<tr>
<td>θ_6</td>
<td>0.94 (0.6%)</td>
<td>1.10 (1.0%)</td>
</tr>
<tr>
<td>θ_7</td>
<td>0.90 (0.7%)</td>
<td>1.03 (0.9%)</td>
</tr>
<tr>
<td>θ_8</td>
<td>0.92 (0.5%)</td>
<td>0.95 (0.9%)</td>
</tr>
<tr>
<td>θ_9</td>
<td>1.11 (14.8%)</td>
<td>0.88 (2.7%)</td>
</tr>
<tr>
<td>θ_{10}</td>
<td>1.42 (6.9%)</td>
<td>0.86 (1.6%)</td>
</tr>
<tr>
<td>θ_{11}</td>
<td>1.89 (4.9%)</td>
<td>0.86 (1.4%)</td>
</tr>
<tr>
<td>θ_{12}</td>
<td>1.23 (7.2%)</td>
<td>1.40 (2.1%)</td>
</tr>
</tbody>
</table>

Normalized Stiffnesses	σ_{dis}^2	5.80x10^{-11} (3.7%)
Normalized Damping Ratios	σ_{vel}^2	2.26x10^{-6} (10.1%)
σ_{acc}^2	0.103 (2.4%)	
Not applicable	3.26 (1.4%)	

Based on 1000 posterior samples from TMCMC.
Robust system analysis for benchmark structure

- **Posterior robust failure probability**
 - Threshold exceedance probability for maximum inter-story drifts over all stories under future earthquake ground motions (Clough-Penzien stochastic ground motion model)

\[
\begin{align*}
\text{Threshold } b & \ (\text{mm}) \\
\text{Stochastic simulation} & \ (\text{ISEE+TMCMC}) \text{ with no.} \\
\text{of uncertain parameters} & \ 8\times2501+4\times2501+15 \\
& +2501=32528 \text{ for } M_2 \\
& \text{and } 12518 \text{ for } M_1
\end{align*}
\]

Failure, \(F = \max_{n \in \{0,1,\ldots,2500\}} \left\{ \left| x_1(t_n) \right|, \left| x_l(t_n) - x_{l-1}(t_n) \right|, l = 2, 3, 4 \right\} \geq b \)
Robust system analysis for benchmark structure

- **Left:** Posterior (solid curve) and prior (dashed) robust failure probabilities for M_2 for threshold exceedance of maximum inter-story drifts over all stories
- **Right:** Nominal failure probability for M_2 (ignores parametric and non-parametric modeling uncertainty)
Outline of Presentation

- Introduction
 - Probability logic as the foundation for Bayesian probability
 - Stochastic model classes & stochastic embedding
 - Bayesian system identification with Ex. 1
 - Prior & posterior robust stochastic analyses with Ex. 2
 - Posterior model class assessment & selection with Ex. 3
- Concluding remarks
Posterior model class assessment/selection

- **Ingredients:**
 1. \mathcal{M} defining a set of candidate stochastic model classes for a system $\{\mathcal{M}_1, ..., \mathcal{M}_j\}$ and a prior $P[\mathcal{M}_j|\mathcal{M}]$ over this set
 2. Input and output data \mathcal{D} from system

- **Posterior probability** $P[\mathcal{M}_j|\mathcal{D},\mathcal{M}], j = 1, ..., J$, from Bayes’ Theorem at model-class level:

$$P[\mathcal{M}_j | \mathcal{D}, \mathcal{M}] = \frac{p(\mathcal{D} | \mathcal{M}_j)P[\mathcal{M}_j | \mathcal{M}]}{p(\mathcal{D} | \mathcal{M})} \propto p(\mathcal{D} | \mathcal{M}_j) \quad \text{if} \quad P[\mathcal{M}_j | \mathcal{M}] = \frac{1}{J}$$

Evidence for model class \mathcal{M}_j
Calculation of evidence for model class \mathcal{M}_j based on \mathcal{D}

- **Evidence** (or marginal likelihood) for \mathcal{M}_j based on data \mathcal{D}:

$$p(\mathcal{D} | \mathcal{M}_j) = \int p(\mathcal{D} | \theta_j, \mathcal{M}_j) p(\theta_j | \mathcal{M}_j) d\theta_j$$

- Calculate using Laplace’s asymptotic method if \mathcal{M}_j is globally identifiable based on data \mathcal{D} [Beck & Yuen: J. Eng. Mech. 2004]
- or by TMCMC [Ching & Chen: J. Eng. Mech. 2007]
- or using posterior (not prior) samples for \mathcal{M}_j by the stationarity method [Cheung & Beck: CACAIE 2010]
Information-theoretic interpretation of evidence for model class \mathcal{M}_j

- Bayes’ Theorem at model-class level automatically gives a quantitative Ockham’s Razor that avoids over-fitting of data [Gull 1988; Mackay 1992] [“Entities should not be multiplied unnecessarily” - William of Ockham, 1285-1349]

- Recently shown [Beck & Yuen 2004; Muto & Beck 2008]:
 \[
 \text{Log evidence} = \text{Mean data fit of } \mathcal{M}_j \ 	ext{[posterior mean of log likelihood]}
 \]
 - Expected information gain about model parameters θ from data \mathcal{D} [relative entropy/Kullback-Leibler info]
 \[
 = \text{Measure of consistency of model class with the data}
 \]
 - Penalty for more complex model classes that extract more information from the data

- Well-known BIC [Schwartz 1978] neglects significant terms of O(1) w.r.t. N in Laplace asymptotic approximation of the log evidence
Posterior robust analysis with multiple candidate model classes

- **Ingredients:**
 1. Set of stochastic model classes $\{M_1, \ldots, M_j\}$ with prior $P[M_j | M]$
 2. Stochastic input model \mathcal{U} defining PDF $p(U_n | \mathcal{U})$
 3. System input and output data \mathcal{D}

- **Posterior hyper-robust failure probability:**

\[
P[Y_n \in F_n | \mathcal{D}, \mathcal{U}, M] = \sum_{j=1}^{J} P[Y_n \in F_n | \mathcal{D}, \mathcal{U}, M_j] \cdot P[M_j | \mathcal{D}, M]
\]
Stochastic model class assessment and selection for benchmark structure

- **Posterior probability of model classes:**

<table>
<thead>
<tr>
<th></th>
<th>M_2</th>
<th>M_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[\ln(p(D</td>
<td>\theta,M_i))]$ (mean data-fit)</td>
<td>-1.5762x10^4</td>
</tr>
<tr>
<td>Expected info gain</td>
<td>76.12</td>
<td>63.52</td>
</tr>
<tr>
<td>$\ln p(D</td>
<td>M_i)$ (log evidence)</td>
<td>-1.5838x10^4</td>
</tr>
<tr>
<td>$P[M_i</td>
<td>D,M]$</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

- **Posterior hyper-robust failure probability:**

$$P[F | D, U, M] = \sum_{j=1}^{2} P[F | D, U, M_j] P[M_j | D, M]$$

Can drop M_1 since its contribution is negligible relative to that of M_2.
Example 3: Bayesian modal identification of 24-story building in Tokyo, Japan

- Steel framed and 97.7m high
- 24 and 2 stories above and below the ground

43 earthquake records over 9 years

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Epicentral distance</th>
<th>Depth</th>
<th>M</th>
<th>JMA seismic intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(y/m/d)</td>
<td>(GMT+9h)</td>
<td>N (deg)</td>
<td>E (deg)</td>
<td>(km)</td>
<td>(km)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1999/07/15</td>
<td>07:56</td>
<td>35.917</td>
<td>140.467</td>
<td>71</td>
<td>56</td>
<td>4.9</td>
</tr>
<tr>
<td>2</td>
<td>1999/09/13</td>
<td>07:56</td>
<td>35.567</td>
<td>140.167</td>
<td>38</td>
<td>77</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>2001/04/03</td>
<td>23:57</td>
<td>34.995</td>
<td>138.108</td>
<td>166</td>
<td>33</td>
<td>5.1</td>
</tr>
<tr>
<td>4</td>
<td>2001/12/02</td>
<td>22:01</td>
<td>39.395</td>
<td>141.267</td>
<td>436</td>
<td>122</td>
<td>6.4</td>
</tr>
<tr>
<td>5</td>
<td>2002/02/12</td>
<td>22:44</td>
<td>36.585</td>
<td>141.085</td>
<td>158</td>
<td>48</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>2002/07/24</td>
<td>05:05</td>
<td>37.228</td>
<td>142.318</td>
<td>289</td>
<td>30</td>
<td>5.7</td>
</tr>
<tr>
<td>7</td>
<td>2002/11/03</td>
<td>12:37</td>
<td>38.893</td>
<td>142.142</td>
<td>417</td>
<td>46</td>
<td>6.1</td>
</tr>
<tr>
<td>8</td>
<td>2003/05/12</td>
<td>00:57</td>
<td>35.865</td>
<td>140.088</td>
<td>38</td>
<td>47</td>
<td>5.2</td>
</tr>
<tr>
<td>9</td>
<td>2003/05/12</td>
<td>00:59</td>
<td>35.872</td>
<td>140.072</td>
<td>38</td>
<td>50</td>
<td>4.6</td>
</tr>
<tr>
<td>10</td>
<td>2003/05/17</td>
<td>23:33</td>
<td>35.735</td>
<td>140.653</td>
<td>82</td>
<td>47</td>
<td>5.1</td>
</tr>
<tr>
<td>11</td>
<td>2003/05/26</td>
<td>18:24</td>
<td>38.805</td>
<td>141.682</td>
<td>389</td>
<td>71</td>
<td>7.0</td>
</tr>
<tr>
<td>12</td>
<td>2003/09/20</td>
<td>12:54</td>
<td>35.215</td>
<td>140.303</td>
<td>69</td>
<td>70</td>
<td>5.8</td>
</tr>
<tr>
<td>13</td>
<td>2003/10/15</td>
<td>16:30</td>
<td>35.610</td>
<td>140.052</td>
<td>27</td>
<td>74</td>
<td>5.1</td>
</tr>
<tr>
<td>14</td>
<td>2003/11/12</td>
<td>17:26</td>
<td>33.170</td>
<td>137.057</td>
<td>370</td>
<td>398</td>
<td>6.5</td>
</tr>
<tr>
<td>15</td>
<td>2003/11/15</td>
<td>03:43</td>
<td>36.428</td>
<td>141.168</td>
<td>154</td>
<td>48</td>
<td>5.8</td>
</tr>
<tr>
<td>16</td>
<td>2004/04/04</td>
<td>08:02</td>
<td>36.387</td>
<td>141.157</td>
<td>150</td>
<td>49</td>
<td>5.8</td>
</tr>
<tr>
<td>17</td>
<td>2004/07/17</td>
<td>15:10</td>
<td>34.833</td>
<td>140.358</td>
<td>106</td>
<td>69</td>
<td>5.5</td>
</tr>
<tr>
<td>18</td>
<td>2004/09/05</td>
<td>19:07</td>
<td>33.028</td>
<td>136.800</td>
<td>398</td>
<td>38</td>
<td>6.9</td>
</tr>
<tr>
<td>19</td>
<td>2004/09/05</td>
<td>23:57</td>
<td>33.143</td>
<td>137.142</td>
<td>367</td>
<td>44</td>
<td>7.4</td>
</tr>
<tr>
<td>20</td>
<td>2004/10/06</td>
<td>23:40</td>
<td>35.988</td>
<td>140.088</td>
<td>48</td>
<td>66</td>
<td>5.7</td>
</tr>
<tr>
<td>21</td>
<td>2004/10/23</td>
<td>17:56</td>
<td>37.292</td>
<td>138.867</td>
<td>199</td>
<td>13</td>
<td>6.8</td>
</tr>
<tr>
<td>22</td>
<td>2004/10/23</td>
<td>17:59</td>
<td>37.312</td>
<td>138.855</td>
<td>201</td>
<td>16</td>
<td>5.3</td>
</tr>
<tr>
<td>23</td>
<td>2004/10/23</td>
<td>18:03</td>
<td>37.353</td>
<td>138.983</td>
<td>201</td>
<td>9</td>
<td>6.3</td>
</tr>
<tr>
<td>24</td>
<td>2004/10/23</td>
<td>18:34</td>
<td>37.305</td>
<td>138.930</td>
<td>198</td>
<td>14</td>
<td>6.5</td>
</tr>
<tr>
<td>25</td>
<td>2004/10/25</td>
<td>06:04</td>
<td>37.330</td>
<td>138.947</td>
<td>200</td>
<td>15</td>
<td>5.8</td>
</tr>
<tr>
<td>26</td>
<td>2004/10/27</td>
<td>10:40</td>
<td>37.292</td>
<td>139.033</td>
<td>193</td>
<td>12</td>
<td>6.1</td>
</tr>
<tr>
<td>27</td>
<td>2005/02/16</td>
<td>04:46</td>
<td>36.035</td>
<td>139.895</td>
<td>45</td>
<td>45</td>
<td>5.4</td>
</tr>
<tr>
<td>28</td>
<td>2005/04/11</td>
<td>07:22</td>
<td>35.727</td>
<td>140.620</td>
<td>79</td>
<td>52</td>
<td>6.1</td>
</tr>
<tr>
<td>29</td>
<td>2005/06/20</td>
<td>01:15</td>
<td>35.732</td>
<td>140.693</td>
<td>80</td>
<td>51</td>
<td>5.6</td>
</tr>
<tr>
<td>30</td>
<td>2005/07/23</td>
<td>16:34</td>
<td>35.582</td>
<td>140.138</td>
<td>35</td>
<td>73</td>
<td>6.0</td>
</tr>
<tr>
<td>31</td>
<td>2005/08/08</td>
<td>00:06</td>
<td>36.338</td>
<td>141.445</td>
<td>170</td>
<td>46</td>
<td>5.6</td>
</tr>
<tr>
<td>32</td>
<td>2005/08/16</td>
<td>11:46</td>
<td>38.150</td>
<td>142.278</td>
<td>357</td>
<td>42</td>
<td>7.2</td>
</tr>
<tr>
<td>33</td>
<td>2005/10/19</td>
<td>20:44</td>
<td>36.382</td>
<td>141.042</td>
<td>141</td>
<td>48</td>
<td>6.3</td>
</tr>
<tr>
<td>34</td>
<td>2007/01/16</td>
<td>03:17</td>
<td>34.937</td>
<td>138.892</td>
<td>111</td>
<td>175</td>
<td>5.8</td>
</tr>
<tr>
<td>35</td>
<td>2007/03/25</td>
<td>09:41</td>
<td>37.220</td>
<td>136.685</td>
<td>326</td>
<td>11</td>
<td>6.9</td>
</tr>
<tr>
<td>36</td>
<td>2007/07/16</td>
<td>10:13</td>
<td>37.557</td>
<td>138.608</td>
<td>235</td>
<td>17</td>
<td>6.8</td>
</tr>
<tr>
<td>37</td>
<td>2007/08/16</td>
<td>04:15</td>
<td>35.443</td>
<td>140.530</td>
<td>74</td>
<td>31</td>
<td>5.3</td>
</tr>
<tr>
<td>38</td>
<td>2007/08/18</td>
<td>16:55</td>
<td>35.342</td>
<td>140.345</td>
<td>63</td>
<td>20</td>
<td>5.2</td>
</tr>
<tr>
<td>39</td>
<td>2008/05/08</td>
<td>01:02</td>
<td>36.230</td>
<td>141.948</td>
<td>208</td>
<td>60</td>
<td>6.4</td>
</tr>
<tr>
<td>40</td>
<td>2008/05/08</td>
<td>01:45</td>
<td>36.227</td>
<td>141.607</td>
<td>179</td>
<td>51</td>
<td>7.0</td>
</tr>
<tr>
<td>41</td>
<td>2008/06/14</td>
<td>08:43</td>
<td>39.028</td>
<td>140.880</td>
<td>388</td>
<td>8</td>
<td>7.2</td>
</tr>
<tr>
<td>42</td>
<td>2008/07/19</td>
<td>11:39</td>
<td>37.520</td>
<td>142.263</td>
<td>305</td>
<td>32</td>
<td>6.9</td>
</tr>
<tr>
<td>43</td>
<td>2008/07/24</td>
<td>00:26</td>
<td>39.732</td>
<td>141.635</td>
<td>482</td>
<td>108</td>
<td>6.8</td>
</tr>
</tbody>
</table>
ARX model class \mathcal{M}_d of order d

- **Auto-Regressive eXogenousous model:**

$$y_n = -\sum_{j=1}^{d} a_j y_{n-j} + \sum_{j=0}^{d} b_j u_{n-j} + e_n$$

- **Input**
- **Output**

$$y_n = y(n\Delta t) \quad u_n = u(n\Delta t)$$

$$e_n = e(n\Delta t) \sim \text{i.i.d. } \mathcal{N}(0, \sigma^2)$$

- **Prediction error**

- **Gaussian likelihood based on I/O data** $\mathcal{D}_N = \{\hat{Y}_N, \hat{U}_N\}$

- **Model parameters:** $\theta = [a_1, ..., a_d, b_0, ..., b_d, \sigma^2]^T \in \mathbb{R}^{2d+2}$

- **Gaussian priors on coefficients, lognormal prior on σ^2**
Probability of each model class: Record #30

<table>
<thead>
<tr>
<th>Model order d</th>
<th>...</th>
<th>26</th>
<th>28</th>
<th>30</th>
<th>32</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior probability of model class \mathcal{M}_d</td>
<td>...</td>
<td>0.0</td>
<td>0.93</td>
<td>0.07</td>
<td>0.0</td>
<td>...</td>
</tr>
</tbody>
</table>

- Equal prior probabilities are chosen for each \mathcal{M}_d
- Most probable a posteriori ARX order is 28
Natural frequencies vs response amplitude
Natural frequencies after amplitude compensation
Concluding Remarks #1

- **Rigorous framework for Bayesian System ID**: based on probability logic for quantifying plausible reasoning
 - Treats uncertainty due to missing information (epistemic); the assumption of inherent randomness is not needed (aleatory)
 - Uses only the probability axioms and the probability models defined by a chosen stochastic model class for the system

- **Prior/posterior robust analysis**: combine the stochastic predictions of all of the models corresponding to prior/posterior samples generated by MC/MCMC algorithms (rather than selecting a single nominal or “optimal” MAP or MLE model to represent the system)
Concluding Remarks #2

- **Posterior model class assessment**: use the posterior probability of each model class to assess multiple candidate model classes based on system data.

 - This assessment provides a quantitative Ockham’s razor to avoid over-fitting since the posterior probability of each model class trades-off its data-fit against its “complexity” (amount of information it extracts from the data).
Thank you!

Developing stochastic I/O models by stochastic embedding: Method 1

- e.g. choosing prediction-error covariance matrix $\sigma^2 I_{N_o}$ gives:

$$p(Y_N | U_N, \theta, \mathcal{M}) = \prod_{n=1}^{N} p(y_n | U_n, \theta, \mathcal{M})$$

$$= (2\pi \sigma^2)^{-\frac{N_o N}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{n=1}^{N} \| y_n - q_n(U_n, \theta) \|^2 \right)$$

- defines a set of stochastic I/O models where $\theta \in \Theta \subset \mathbb{R}^{N_p}, \sigma > 0$

Specification of a prior PDF for (θ, σ) completes the stochastic model class \mathcal{M}; e.g. a Gaussian prior $N(\theta, \Sigma_\theta)$

- If system data $\mathcal{D}_N = \{\hat{Y}_N, \hat{U}_N\}$ is available, then Bayes’ Theorem for the model class \mathcal{M} gives for the log posterior PDF:

$$\ln p(\theta | \mathcal{D}_N, \mathcal{M}) = \ln p(\hat{Y}_N | \hat{U}_N, \theta, \mathcal{M}) + \ln p(\theta | \mathcal{M}) + \text{const.}$$

$$= - \left[\text{data-fit term} + \text{regularization term} \right]$$

e.g. choosing the MAP (maximum a posteriori) values for (θ, σ) is equivalent to regularized least-squares estimation of θ
Masing hysteretic models

- Masing’s postulate (1926) for **steady-state** hysteretic behavior of metals:
 Given an initial loading curve $r = f(x)$ then for **unloading**:
 $$\frac{r - r_0}{2} = f\left(\frac{x - x_0}{2}\right)$$

- For **transient loading**, Jayakumar (1987) showed that two hysteretic rules (extending Masing’s rule) give the same hysteretic behavior as Iwan’s DEM [J. App. Mech. 1966, 67]

- Models are defined by initial loading curve $r = f(x)$ only (or yield strength distribution function for DEM)

- No non-physical behavior since DEM corresponds to a parallel system of elasto-plastic elements
Masing hysteretic shear building model

- Model multi-story structure as a shear building with story shear forces r_i related to inter-story drifts $(x_i - x_{i-1})$ by Masing model with initial loading curve (similar to Bouc-Wen):

$$\dot{r}_i = K_i [1 - (r_i / r_{u,i})^{\alpha_i}] (\ddot{x}_i - \ddot{x}_{i-1})$$

K_i = small-amplitude interstory stiffness

$r_{u,i}$ = ultimate strength of story

α_i = yield transition parameter

Corresponding to $r_i = f_i (x_i - x_{i-1})$:

![Yield strength distribution](image)

![Initial force-deflection curve](image)
Prior system analysis for system design

- If failure probabilities $P_F = P[Y_n \in F_n \mid \mathcal{U}, \mathcal{M}] \ll 1$, we can improve efficiency by using advanced simulation methods:
 - Special issue of Structural Safety (2007) on benchmark reliability problems in higher dimensions: Schueller & Pradlwarter (Eds)
 - e.g. **Subset Simulation** for general model dynamics
 - e.g. **ISEE** for linear model dynamics with Gaussian excitation
 (Au & Beck: Prob. Eng. Mech. 2001) – uses importance sampling with a weighted sum of Gaussians, one for each elementary “failure” event at all discrete times
Accuracy of MCS, Subset Simulation and ISEE for failure probability P_F

1. Coefficient of variation of estimators for K samples

\[c.o.v., \delta = \frac{\text{standard deviation}}{\text{mean}} = \frac{\Delta}{\sqrt{K}} \]

- **MCS**: \[\Delta \approx \frac{1}{\sqrt{P_F}} \]
- **Subset Simulation**: \[\Delta = \alpha | \log_{10} P_F |, \alpha = O(1) \]
- **ISEE**: \[\Delta \approx 1 \text{ [decreases slightly as } P_F \text{ decreases!]} \]

E.g. to get a c.o.v. of 35% for $P_F = 10^{-3}$ (resp. 10^{-4}):
- MCS requires about 10,000 (resp. 100,000) samples;
- Subset Simulation requires 1500 (resp. 2000) samples;
- ISEE requires 10 samples for any P_F!
Posterior probabilities of \mathcal{M}_d for various d

- Probability of \mathcal{M}_d based on data \mathcal{D} (Bayes’ Theorem):

$$P(\mathcal{M}_d \mid \mathcal{D}, \bigcup \mathcal{M}_d) = \frac{p(\mathcal{D} \mid \mathcal{M}_d) P(\mathcal{M}_d \mid \bigcup \mathcal{M}_d)}{p(\mathcal{D} \mid \bigcup \mathcal{M}_d)}$$

- Evidence:

$$EV(\mathcal{M}_d \mid \mathcal{D}) = p(\mathcal{D} \mid \mathcal{M}_d) = \int p(\mathcal{D} \mid \theta, \mathcal{M}_d) p(\theta \mid \mathcal{M}_d) d\theta$$

- Laplace’s asymptotic approximation about MLE $\hat{\theta}_L$

$$EV(\mathcal{M}_d \mid \mathcal{D}) \approx p(\mathcal{D} \mid \hat{\theta}_L, \mathcal{M}_d) p(\hat{\theta}_L \mid \mathcal{M}_d) (2\pi)^{Np/2} \det H(\hat{\theta}_L)^{1/2}$$

= Optimal likelihood x Ockham factor

Hessian matrix: $H(\theta) \triangleq -\nabla_\theta \nabla_\theta \ln p(\mathcal{D} \mid \theta, \mathcal{M}_d)$
Log evidence and AIC: Record #30 (X direction)

\[\mathcal{M}_d: d=10, 12, \ldots, 58, 60 \]

Scaled AIC = Optimal log likelihood - no. of parameters

Log evidence \approx Optimal log likelihood - log Ockham factor
Modal parameters: MAP estimates, precision and correlation from Record #30

- MAP estimates and coefficient of variation (CV)

<table>
<thead>
<tr>
<th>MAP CV (%)</th>
<th>f_1 (Hz)</th>
<th>h_1 (%)</th>
<th>γ_1</th>
<th>f_2</th>
<th>h_2</th>
<th>γ_2</th>
<th>f_3</th>
<th>h_3</th>
<th>γ_3</th>
<th>f_4</th>
<th>h_4</th>
<th>γ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.386</td>
<td>2.369</td>
<td>1.466</td>
<td>1.172</td>
<td>3.300</td>
<td>-0.621</td>
<td></td>
<td>2.025</td>
<td>3.650</td>
<td>0.363</td>
<td></td>
<td></td>
<td>2.971</td>
</tr>
<tr>
<td>0.528</td>
<td>22.950</td>
<td>5.444</td>
<td>0.134</td>
<td>3.951</td>
<td>1.548</td>
<td></td>
<td>0.286</td>
<td>7.983</td>
<td>3.799</td>
<td></td>
<td></td>
<td>0.676</td>
</tr>
</tbody>
</table>

- Absolute values of correlation coefficients $|\rho_{jk}|$