
1 1 1 

Bayesian System Identification and Response 
Predictions Robust to Modeling Uncertainty 

James L. Beck  

George W. Housner Professor of Engineering & Applied Science 

  Department of Mechanical & Civil Engineering 
 Department of Computing & Mathematical Sciences 

California Institute of Technology 

www.its.caltech.edu/~jimbeck/ 

 

ICOSSAR 19 June 2013 



Focus of Presentation 
Performance prediction using a computational model for a dynamic 

system treating both excitation and modeling uncertainties 

2 

•  Long history in structural reliability of treating excitation uncertainty 
under wind and earthquakes (random vibrations, stochastic dynamics) 
•  Rigorous treatment of modeling uncertainty is only recent 

Modeling Uncertainty 
Requires a Bayesian probability approach where the 

probability of a model is a meaningful concept 

•  Huge increase in the development and use of Bayesian methods in the 
   last decade or so 
•  Allows analysis that is robust to modeling uncertainties, both 
   prior (e.g. design based on reliability or life-cycle cost optimization), &  
   posterior (e.g. system ID, structural health monitoring, robust control, 
   state &/or parameter estimation ) 
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Outline of Presentation 

 Introduction 

 Probability logic as the foundation for Bayesian probability 

 Stochastic model classes & stochastic embedding 

 Bayesian system identification with Ex. 1 

 Prior & posterior robust stochastic analyses with Ex. 2 

 Posterior model class assessment & selection with Ex.3 

 Concluding remarks 
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Predicting system performance under 
excitation and modeling uncertainty 
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Prior analysis: During stochastic design, 

use probability models to predict system 

performance, treating uncertainties in input, 

system modeling and output Stochastic model 
of seismic ground 

acceleration  

Finite element  
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parameters 
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Posterior analysis: During operation, use 

sensor data to update these probability 

models and their performance predictions 
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System performance measure in the 
presence of uncertainty: Failure probability 
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Interpretation of probability 

 The axioms of probability are well-established but after three 
centuries, the meaning of probability is still in dispute 

 The interpretation is important in applications to real systems 
and phenomenon – it governs: 

 perceived domain of its applicability;  

 e.g. is the probability of a model meaningful? 

 understanding of the results of stochastic analysis;  

 e.g. what does the failure probability mean?  

 (Is it an inherent property of the system, or   

  a property of what we know about the system and its future excitation?) 
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Two prevailing interpretations of 
probability: Frequentist & Bayesian 

Frequentist 

 Defn: Probability is the relative  
 frequency of occurrence of an 
 “inherently random” event in 
 the “long run” 
 

1) Probability distributions are 
inherent properties of “random” 
phenomena 

2) Limited scope, e.g. no meaning for 
the probability of a model 

3) “Inherent randomness” is assumed 
but cannot be proved 

   Bayesian 

 Defn: Probability is a measure 
of the plausibility of a statement 
based on specified information 

 
1) Probability distributions represent 

states of plausible knowledge about 
systems and phenomena, not 
inherent properties of them 

2) Probability of a model is a measure 
of its plausibility relative to other 
models in a set 

3) Pragmatically quantifies uncertainty 
due to missing information without 
any claim that this is due to nature’s 
“inherent randomness” 
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Frequentist vs Bayesian 

 Philosophical question 
 Is uncertainty about predicting any phenomenon because of: 

(a) an inherent “randomness” property of the phenomenon (producing 
aleatory/aleatoric uncertainty),  or  

(b) due to our limited capacity to collect or understand the relevant information 
(producing epistemic uncertainty due to missing information)? 

 E.T. Jaynes’ answer (2003): (a) is an example of the Mind-Projection Fallacy:  

 Our models of reality are confused with reality,  

 or more specifically here: 

 Our uncertainty is projected onto nature as its inherent property 

 Is it “inherent randomness ” or does it just “look random”? 
       (a) Data-stream from a random number generator “looks random” but it is 

deterministic if the algorithm and initial condition (“seed”) are known; 

       (b) The outcome of coin tosses “looks random” but it is a deterministic 
mechanics problem if the initial conditions are known 



 James Clerk Maxwell (1850): 

 The true logic of this world is the calculus of probabilities, which 

takes account of the magnitude of the probability which is, or 
ought to be, in a reasonable man’s mind 

 Pierre Simon Laplace (1814): 

 Probability theory is nothing but common sense reduced to 

calculation [Supplement to his Analytical Theory of Probabilities, 1812] 

Early quotes regarding probability theory 
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A connection between Bayesian  
probability and relative frequency 

Take a binomial probability model for an uncertain event A 
with model parameter θ = probability of event A occurring. 

 

If all values of θ are equally plausible a priori, then the most 
probable value a posteriori of parameter θ is: 

    = relative frequency of event A in any finite number of trials  

 

[The full posterior distribution is a beta PDF] 
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θ̂
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Outline of Presentation 

 Introduction 

 Probability logic as the foundation for Bayesian 
probability 

 Stochastic model classes & stochastic embedding 

 Bayesian system identification with Ex. 1 

 Prior & posterior robust stochastic analyses with Ex. 2 

 Posterior model class assessment & selection with Ex.3 

 Concluding remarks 



12 12 12 

 Extends binary Boolean logic to a multi-valued logic for 
quantification of plausible reasoning under incomplete information 

Probability logic: Rigorous foundation  
for Bayesian probability 

   Seminal work on foundations by R.T. Cox:   
     “Probability, Frequency and Reasonable Expectation”, Amer. J. Physics 1946  

      The Algebra of Probable Inference, Johns Hopkins Press 1961 

   Treatise on theory and applications by E.T. Jaynes:  
      Probability Theory – The Logic of Science, Cambridge U. Press 2003 

 Key idea: Probability P[b|a] = measure of plausibility of 

statement  b based on the information in statement  a  

[P[b|a]=1 if a is true implies b is true; =0 if a implies b is false] 
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Probability logic axioms 

 By extending Boolean logic to incomplete information, R.T. Cox derived 
a minimal set of axioms for probability logic (1946, 1961): 

 For any statements a, b and c,  

P1: P[b|a] ≥ 0            [By convention] 

P2: P[~b|a] = 1 – P[b|a]           [Negation Function] 

P3: P[c&b|a] = P[c|b&a]P[b|a]           [Conjunction Function] 

 These axioms and De Morgan’s Law of Logic imply Disjunction Function: 

    P[c or b|a] = P[c|a] + P[b|a] – P[c&b|a] 

 

 They imply Kolmogorov’s statement of probability axioms (1933) for 

probability measure P(A), which has no built-in meaning, by using: 

   If  x = uncertain-valued variable with possible values in set X, then:                                

                            (M specifies probability model for x) ( ) P[ | ],  P A x A M A X
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 Prior & posterior robust stochastic analyses with Ex. 2 
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Fundamental concept for treating 
system modeling uncertainty 

 Stochastic model class M  defined by two steps: 

(1) Choose set of stochastic I/O (forward) models for prediction: 

{ ( | , , ) : }θ θ pN

n np Y U RM
Un ,Yn= input & output time histories up to any time tn  

θ=uncertain model parameters 
e.g. use stochastic embedding of a parameterized deterministic I/O model 

(2) Choose PDF  p(θ|M) (prior) over this set that expresses the 

initial relative plausibility of each stochastic model in (1) 

 If system data                         is available, then Bayes’ Theorem 

using (1) and (2) gives updated PDF (posterior): 

ˆ ˆ{ , }N N NY UD

ˆ ˆ(θ | , ) ( | ,θ, ) (θ | )N N Np p Y U pD M M M

 Model class M  treats modeling uncertainty, both “parametric” and 

“non-parametric” (from “unmodeled dynamics”) 
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Developing stochastic I/O models 
for dynamic systems 

 General strategy: Develop a probability model for stochastic 

predictions of the system output conditional on its input and model 
parameters θ: 

Actual 
System Inputs 

Uncertain Given 
IN

ku R

[ : 1,..., ] InN

n kU u k n R

[ : 1,..., ] onN

n kY y k n R

Outputs 

(possibly derived from continuous-time stochastic models) 

where discrete time histories for No predicted outputs and 

NI  corresponding inputs up to any time tn are denoted by: 

( | ,θ, )n np Y U M oN
ky R
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 Stochastic embedding: Start with deterministic I/O 

model of a dynamic system giving               , 

System 
Model θ 

Input 

                  from prob. model for prediction-error time history 

θ pN
R

( ,θ)n n n nv y q U

( | ,θ,σ)n np Y U
e.g. take prediction errors as zero-mean Gaussian white-noise 
(maximum entropy probability model) so system output is i.i.d.
  

Output 

~ N( ( ,θ), (σ))  n n n nty q U at each time 

Developing stochastic I/O models by 
stochastic embedding: Method 1 

 Uncertain output prediction error introduced by: 

System output 

Model output 

IN
nu R oN

nq R

( ,θ)n nq U
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 Stochastic embedding of state-space models: Start with 
deterministic state-space model of a dynamic system giving    
         for                      in terms of a state evolution eqn: 

 

System 
Model θ 

Input 1 1( , ,θ)

( , ,θ)

n n n

n n n

x F x u

q H x u nu

               defined by probability models for missing information, 

i.e. initial state x0 and time histories of uncertain state and output 

prediction errors, wn and vn (use maximum entropy PDFs) 

 Uncertain state and output prediction errors (from  

“unmodeled dynamics”) introduced by:  

( | ,θ)n np Y U

Output 
nq

1 1( , ,θ)   &  n n n nx F x u w ( , ,θ)n n n ny H x u v

Developing stochastic I/O models by 
stochastic embedding: Method 2 

( ,θ)n nq U θ pN
R
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System identification: Typical approach 
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Goal: Use system I/O 

data D  to develop a 

model to represent I/O 
behavior of a system 

Typical Approach: 
Propose a deterministic 
model with uncertain 

parameter vector θєΘ 

then estimate its 

value by using data D 
e.g. least-squares output-
error, maximum likelihood 
or maximum a posteriori 
(MAP) estimates 

1 1( ;θ)F

n n( ;θ)F
Structural model with 

uncertain parameters θ 

Model input (use recorded base acceleration) 
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System identification: Typical approach 

 Problem #1: No model is expected to exactly represent system I/O 
behavior – so no true parameter values to estimate!  

 
 Problem #2: Parameter estimates are often non-unique (model is 

unidentifiable based on data D) – fixing some parameter values to 

make unique estimates for the others may produce biased predictions 

 

 Problem #3: Every model will have uncertain prediction errors  
(e.g. “unmodeled dynamics”) – how can we quantify this uncertainty? 

 

 

 Resolution: Use Bayesian system identification 



Bayesian system identification 

 System ID for dynamic systems is viewed as inference 
about plausible system models based on data - not a 
quest for the “true” model or parameter values 

 

 Provides a rigorous stochastic framework for quantifying 
modeling uncertainty based only on probability axioms and 
probability models defined by stochastic model classes 

 

 Instead of parameter estimation, system data is used to 
do Bayesian updating of the probability of each stochastic 
I/O model in the parameterized set 

22 
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Example 1: Bayesian system ID using 
Masing hysteretic structural models 

 Three-story building:  

 Input is strong ground motion 
record from 1994 Northridge 
Earthquake, Los Angeles (10 s 
with time-step=0.02 s) 

 Masing hysteretic model for 
inter-story force versus 
deformation used to generate 
synthetic sensor data 

 Output is noisy accelerations at 
each floor (20% RMS noise 
added to “simulate” modeling 
errors & measurement noise) 

Floor accelerations (used in updating) 

Hysteresis loops (not used in updating) 

   1st story              2nd story             3rd story [From Muto & Beck: J. Vibration & Control 2008] 
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Stochastic model class M  for system 

ID using inelastic seismic response 

 Stochastic I/O model: From 
stochastic embedding of Masing 
shear building model (Method 1): 

 

 

 

Model class M  has 12 parameters   

(3 per story for force-deformation,     
2 Rayleigh damping &       a common 
acceleration prediction-error variance) 

  Prior PDFs: Plots show independent lognormal prior PDFs on hysteretic 
parameters (c.o.v. of 0.5) and exact values (dashed) used to generate data. 
Uniform priors on Rayleigh damping parameters & prediction-error variance 
(not shown) 

(t) (θ) (t) (t, θ) u(t)M C F Mbx x x |

Prior PDFs 

2

3Output, (t )  N(0,σ I )n n ny = x e

2σ ,
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 Given data D, use Bayes’ Theorem to update initial plausibility 

of each model: 

Bayesian updating for model class M  
[T.Bayes 1763; P.S.Laplace 1774,1812; H.Jeffreys 1939]  

Prior (Initial) PDF 

 Normalizing Constant   

= Evidence for M 
Posterior (Updated) PDF 

Likelihood 

 Laplace’s method for large amount of data:                    
Gaussian approximation of posterior PDF about MAP or MLE: 

 challenging high-D optimization to find MAP/MLE parameter values 

 requires M  to be globally identifiable based on data D (then MAP≈MLE) 

 covariance matrix         is the inverse of the negative of Hessian matrix of 
log posterior (for MAP) or log likelihood (for MLE)  

 Markov Chain Monte Carlo methods now dominant: draw 

posterior samples using either Gibbs Sampler, Metropolis-Hastings 
algorithm, Hamiltonian/Hybrid MC, etc. 

( ) ( | )
( | )

( )

,
,

p p
p

p

|

|

D M M
D M

D M

ˆ ˆN(θ, (θ))

ˆ(θ)
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0.022
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0.075

13m

0.279

17m

1.000

21m

Projection of 12-dimensional samples generated by Metropolis algorithm at different 
levels of one run of TMCMC algorithm [Ching & Chen: JEM 2007] when updating using 
model class M (Repeated samples are indicated by size of markers) 

 

Multi-level MCMC sampling by annealing 

Each population is 1000 
samples of stiffness and 
strength parameters for 
third story 

Prior 

Posterior 

1 2 M..( ) ( | , ) ( | ) where 0 1m

m p pθ θ θD M MTarget PDF: 
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Projection of 12-dimensional posterior samples from final level of TMCMC when updating 
using the model class. Last 2 slides show that model class is unidentifiable based on data 
 

Robust predictions based on all posterior samples should be used, not just for one 
parameter estimate; Laplace asymptotic approximation not applicable 

Posterior samples from TMCMC  
using inelastic seismic building data 

First story Second story Third story 

Population is 1000 samples of yield transition and strength parameters 
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 Use the whole model class M for robustness w.r.t. modeling 

uncertainties in the prediction of system performance: 

 Combine all stochastic predictions p(Yn|Un,θ,M)  for each   

θ   Θ weighted by their probability conditional on the available 

information (Theorem of Total Probability) 

 Prior robust analysis uses weighting by prior PDF p(θ|M)  

 Posterior robust analysis uses weighting by posterior PDF 

p(θ|DN,M) 

 Prior and posterior hyper-robust analyses use multiple 
candidate model classes for a system, weighting each of their 

robust stochastic predictions by their prior and posterior 
probabilities, respectively (Bayesian model averaging) 

Robust stochastic system analysis 

29 
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 Ingredients: 

(1) Stochastic model class M defining set of I/O probability  

models                                       and prior p(θ|M) over set 

(2) Stochastic input model U defining PDF  

 Prior robust failure probability (Total Probability Theorem): 

 Failure: output time-history Yn up to time tn lies in Fn = region of 

unacceptable performance 

 

( |  )np U U

Prior robust analysis for system design 

 Evaluated by drawing K independent samples                         (Monte Carlo 

Simulation), or if PF <<1, use Subset Simulation or ISEE (Au & Beck:PEM 2001) 

( ) ( ) ( )( , , )k k k

n nY U

{ ( | ,θ, ) : θ }n np Y U M

F

K
( )

1

P   P[ | , ]

     I( ) ( | , , ) ( | ) ( | )

1
     E[I( ) , ] I( )

K

n n

n n n n n n n

k

n n n n

k

Y F

Y F p Y U p p U dY d dU

Y F Y F

U M

M M U

MU

Input uncertainty Modeling uncertainty 
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 Ingredients: 

  (1) Stochastic model class M  

  (2) Stochastic input model U defining PDF                

(3) System input and output data DN 

  Posterior robust failure probability (Bayes Theorem   

and Total Probability Theorem): 

( |  )np U U

Posterior robust analysis for updated 
system performance predictions 

Input uncertainty Modeling uncertainty 

  Evaluated by drawing independent samples                          where posterior 

samples are generated by using MCMC simulation, e.g. multi-level methods such 
as TMCMC based on Metropolis-Hastings algorithm 

( ) ( ) ( )( , , )k k k

n nY U

K
( )

1

P[ | , , ]

I( ) ( | , , ) ( | , ) (

1
E[I( ) , , ] I( )

K

n n N

n n n n N n n n

k

n n N n n

k

Y F

Y F p Y U p p U dY d dU

Y F Y F

D

D

D U

U M

M M |U)

M
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 Find optimal (MAP or MLE) parameter values    i.e. 

maximize posterior p(θ|DN,M) or likelihood p(DN|θ,M),  
then to          (Laplace’s asymptotic approximation): 

 

Posterior robust analysis for updated 
system performance predictions 

θ̂,

1( )
N

O

 Laplace’s method for posterior robust analysis:  

ˆP[ | , , ] P[ | , ,θ, ]n n N n n NY F Y FU M U MD D

ˆ     I( ) ( | ,θ, ) ( | )n n n n n n nY F p Y U p U dY dUM U

 Acceptable approximation only if M  is globally identifiable on DN 

(MLE is unique) and large amount of data N (then MAP≈MLE) 

 Parameter estimation (i.e. using   ) is reasonable only in this 
case (otherwise spurious reductions in prediction uncertainty) 

 Ref: Beck & Katafygiotis: J. Eng. Mech. 1998 

      Papadimitriou et al.: Prob. Eng. Mech. 2001 

 

θ̂
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 4-story, 1/4-scale steel-frame ASCE SHM benchmark structure (JEM 2004) 

 Data D =10 s (time-step=0.004s) of noisy horizontal acceleration (output) 

& wind force (input) at each floor (synthetic data from 120-DOF 3D 
benchmark finite-element model) 

Example 2: Prior & posterior robust 
analysis using linear state-space models 
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 Stochastic linear state-space model of system: 

 

 

 

 System matrices A,B,C,D: use discrete-time version of equations 

of motion for shear-building model with 4 DOF: State xn= displace-

ments & velocities, and output yn= accelerations, at each floor 

 Stochastic embedding: Apply Methods 1 and 2, so establish 

probability models for xo, [w1…wn] & [v1…vn] by using the 

Principle of Maximum Information Entropy: For all n,  

 wn ~ N(0,Σw), vn ~ N(0,Σv), and xo ~ N(0,Σo) and all are 

independent with diagonal covariance matrices Σw, Σv and Σo 

s 1 s 1

s s

( ) ( ) ,   1,2,...

( ) ( ) ,   0,1,2,...

n n n n

n n n n

n

n

x A θ x B θ u w

y C θ x D θ u v

Stochastic embedding of state-space model  
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First stochastic model class  
for benchmark structure  

 First model class M1 [Stochastic embedding: Method 1]:  

 θ = 13 parameters, i.e. θs = 12 mass, stiffness & damping parameters, 

Σo=0 & Σw=0 (no state prediction errors), Σv = σacc
2 I4 is 4x4 diagonal 

matrix with acceleration prediction-error variance the only parameter 

 Prior PDF  p(θ|M1): θs – independent lognormals with median = 

nominal value, and coefficients of variation= 0.1,0.3 &  0.5 for mass, 
stiffness and damping ratio parameters, respectively;  

 Likelihood function for M1: With N=2500 and qn(θs) = state-space 

model output for measured input & state prediction errors vn=0, wn=0:  

 

 1 ( 1) 2
02 acc2

acc

1 1ˆ ˆ ˆ ˆ( | , , ) exp( [ ( )] [ ( )])
2σ

(2 σ )

N
T

N N n n s n n sN N
n

o
p Y U θ y θ y θM q q

2 2

acc maxσ ~U[0, ]
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 Second model class M2 [Stochastic embedding: Method 2]:  

 θ = 15 parameters – same as M1 parameters except that Σw is 

8x8 diagonal matrix with 2 prediction-error variance parameters,  

 σdis
2 and σvel

2, respectively, for displacement and velocity states  

 

 Prior PDF  p(θ| M2): Physical parameters θs are independent 

lognormals as for M1 and all 3 prediction-error variances are 

uniformly distributed and independent 

Second stochastic model class for 
benchmark structure  
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 Likelihood function for M2: 

 

 

 

        = mean predicted acceleration (output) at each floor at   

time n conditioned on observed output at all previous times 

        = covariance matrix of predicted output yn at time n 

conditioned on observed output at all previous times 

 These can be evaluated efficiently using the Kalman filter 
equations from Bayesian sequential state updating  

 (e.g. S.H. Cheung: Caltech PhD Thesis in CE 2009 

       Beck: Structural Control & Health Monitoring 2010) 

1

2 | 1 | 1 | 1
( 1)/2 1/2 0

| 1

0

1 1ˆ ˆ ˆ ˆ( | , , ) exp( ( ) ( ))
2

(2 ) | |

N
T

N N n n n n n n n nN
N N n

n n

n

o

p Y U θ y y S y y

S

M

| 1( )n ny θ

| 1( )n nS θ

Second stochastic model class for 
benchmark structure  
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 Posterior mean and coefficient of variation of model parameters 

M2 M1 

θ1 

θ2 

θ3 

θ4 

θ5 

θ6 

θ7 

θ8 

θ9 

θ10 

θ11 

θ12 

0.97 (0.5%) 

0.98 (0.5%) 

0.99 (0.5%) 

1.07 (0.5%) 

0.76 (0.7%) 

0.94 (0.6%) 

0.90 (0.7%) 

0.92 (0.5%) 

1.11 (14.8%) 

1.42 (6.9%) 

1.89 (4.9%) 

1.23 (7.2%) 

1.12 (0.9%) 

1.13 (1.0%) 

1.04 (0.9%) 

1.21 (1.0%) 

0.81 (0.9%) 

1.10 (1.0%) 

1.03 (0.9%) 

0.95 (0.9%) 

0.88 (2.7%) 

0.86 (1.6%) 

0.86 (1.4%) 

1.40 (2.1%) 

σdis 

 

σvel 

 

5.80x10-11 (3.7%) 
 

2.26x10-6 (10.1%) 

Not applicable 

σacc 
0.103 (2.4%) 3.26 (1.4%) 

2 

2 

2 

Posterior samples from TMCMC 
for benchmark structure  

Based on 1000 
posterior samples 
from TMCMC 

Normalized  
Masses 

Normalized  
Stiffnesses 

Normalized  
Damping 
Ratios 
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 Posterior robust failure probability  

 Threshold exceedance probability for maximum inter-story 
drifts over all stories under future earthquake ground 
motions (Clough-Penzien stochastic ground motion model) 
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x t x t x t l

M2 

M1 

Stochastic simulation 
(ISEE+TMCMC) with no. 
of uncertain parameters 
8x2501+4x2501+15 
+2501=32528 for M2    

and 12518 for M1  

Threshold b (mm) 

Robust system analysis 
for benchmark structure  

Robust 

Failure 

Probability 
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 Left: Posterior (solid curve) and prior (dashed) robust 
failure probabilities for M2 for threshold exceedance of 

maximum inter-story drifts over all stories  

 Right: Nominal failure probability for M2 (ignores 

parametric and non-parametric modeling uncertainty) 
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Outline of Presentation 

 Introduction 

 Probability logic as the foundation for Bayesian probability 

 Stochastic model classes & stochastic embedding 

 Bayesian system identification with Ex. 1 

 Prior & posterior robust stochastic analyses with Ex. 2 

 Posterior model class assessment & selection with Ex.3 

 Concluding remarks 
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 Ingredients: 

 (1) M defining a set of candidate stochastic model classes for 

a system                    and a prior P[M j|M] over this set 

 (2) Input and output data D  from system 

Posterior model class assessment/selection 

1 J{ ,..., }M M

   Posterior probability P[M j|D,M], j = 1,...,J, from Bayes’    

 Theorem at model-class level: 

1
J

( | )P[ | ]
P[ | , ] ( | )  if  P[ | ]

( | )

j j

j j j

p
p

p

M
M M

M

D M M
M D D M M

D

Evidence for model class Mj 
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  Evidence (or marginal likelihood) for M j based on data D : 

 

 

 

 Calculate using Laplace’s asymptotic method if M j is globally  

identifiable based on data D [Beck & Yuen: J. Eng. Mech. 2004]  

or by TMCMC [Ching & Chen: J. Eng. Mech. 2007]  

or using posterior (not prior) samples for M j by the stationarity 

method [Cheung & Beck: CACAIE 2010] 

43 43 

 

Calculation of evidence for 
model class M j based on D 

( | ) ( | , ) ( | )j j j j j jp p p dD DM M M
Likelihood Prior 
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Information-theoretic interpretation  
of evidence for model class M j  

 Recently shown [Beck & Yuen 2004; Muto & Beck 2008]: 

    Log evidence =  Mean data fit of M j [posterior mean of log likelihood] 

                         – Expected information gain about model parameters θ 
       from data D  [relative entropy/Kullback-Leibler info] 

              =  Measure of consistency of model class with the data 

                            – Penalty for more complex model classes that extract  
       more information from the data 

 Well-known BIC [Schwartz 1978] neglects significant terms of O(1) 

w.r.t. N in Laplace asymptotic approximation of the log evidence 

 Bayes’ Theorem at model-class level automatically gives a 
quantitative Ockham’s Razor that avoids over-fitting of data 
[Gull 1988; Mackay 1992] [ “Entities should not be multiplied 
unnecessarily” - William of Ockham, 1285-1349] 
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 Ingredients: 

(1) Set of stochastic model classes                 with prior P[M j|M]                           

(2) Stochastic input model U defining PDF                

(3) System input and output data D 

( |  )np U U

Posterior robust analysis with 
multiple candidate model classes 

J

1

P[ | , , ] P[ | , , ] P[ | , ]n n n n j j

j

Y F Y FM MD U D U M M D

Posterior robust failure  

probability for model class Mj 

Posterior probability 

for model class Mj 

   Posterior hyper-robust failure probability: 

Posterior hyper-robust failure  

probability for model set of M 

1 J{ ,..., }M M
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  Posterior probability of model classes:                        

M2 M1 

E[ln(p(D|θ,Mi))] 

(mean data-fit) 

-1.5762x104 -2.0251x104 

 Expected info 

gain 

76.12 63.52 

lnp(D|Mi)  

(log evidence) 

-1.5838x104 -2.0315x104 

P[Mi|D,M] 1.0000 0.0000 

  Posterior hyper-robust failure probability: 

Stochastic model class assessment and 
selection for benchmark structure  

2

1

P[ | , ] P[ | , , ] P[ | , ]j j

j

F FM M,D U D U M M D

Can drop M1 since its contribution is negligible relative to that of M2 
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 Steel framed and 97.7m high 

 24 and 2 stories above and below the ground 

Example 3: Bayesian modal identification 
of 24-story building in Tokyo, Japan  

accelerometer 

Output 

y(t) 

Input 

u(t) 

Saito & Beck: Eq. Eng. Struc. Dyn. 2010 
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43 earthquake records over 9 years 
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ARX model class M d of order d 

 Gaussian priors on coefficients, lognormal prior on 

 Model parameters: 

1 0

y y u e
d d

n j n j j n j n

j j

a b

 Gaussian likelihood based on I/O data ˆ ˆ{ , }N N NY UD

Prediction error 

T
2 2 2

1 0,..., , ,..., , d

d da a b b R

 Auto-Regressive eXogenous model: 

2

Input Output 
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 Equal prior probabilities are chosen for each M d 

 Most probable a posteriori ARX order is 28 

Probability of each model class: Record #30 

Model order d … 26 28 30 32 … 

Posterior probability of 

model class M d  
… 0.0 0.93 0.07 0.0 … 
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Natural frequencies vs response amplitude 
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Natural frequencies after amplitude compensation 
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Concluding Remarks #1 

 Rigorous framework for Bayesian System ID: based on 
probability logic for quantifying plausible reasoning 

 

 Treats uncertainty due to missing information (epistemic); the 
assumption of inherent randomness is not needed (aleatory) 

 Uses only the probability axioms and the probability models 
defined by a chosen stochastic model class for the system 

 Prior/posterior robust analysis: combine the stochastic 
predictions of all of the models corresponding to prior/ 
posterior samples generated by MC/MCMC algorithms 
(rather than selecting a single nominal or “optimal” MAP or 
MLE model to represent the system) 



54 

Concluding Remarks #2 
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 Posterior model class assessment: use the posterior 
probability of each model class to assess multiple candidate 
model classes based on system data  

 

 This assessment provides a quantitative Ockham’s razor to 
avoid over-fitting since the posterior probability of each model 
class trades-off its data-fit against its “complexity” (amount of 
information it extracts from the data) 



Thank you! 

“Bayesian System Identification based on Probability Logic”, J.L. Beck, 
International J. Structural Control and Health Monitoring 2010 
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“Prior and Posterior Robust Stochastic Predictions for Dynamical 
Systems using Probability Logic”, J.L. Beck and A.A. Taflanidis, 

International J. Uncertainty Quantification, 2013 
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1

22 2
2

1

( | , , ) ( | , , )

1
                            (2 σ ) exp( ( , ) )

2σ

N

N N n nn

N N No

n n n

n

p Y U p y U

y q U

θ θ

θ

M M

Developing stochastic I/O models by 
stochastic embedding: Method 1 

- defines a set of stochastic I/O models where  θ ,  σ 0pN
R

Specification of a prior PDF for (θ, σ) completes the stochastic 

model class M; e.g. a Gaussian prior  

 e.g. choosing prediction-error covariance matrix         gives:    2σ I
oN

θN(θ, )

 If system data                         is available, then Bayes’ Theorem 

for the model class M gives  for the log posterior PDF: 

 

          =  − [ data-fit term  +  regularization term ] 

ˆ ˆ{ , }N N NY UD

ˆ ˆln (θ | , ) ln ( | ,θ, ) ln (θ | )+const.N N Np p Y U pD M M M

 e.g.  choosing the MAP (maximum a posteriori) values for (θ, σ) is 
equivalent to regularized least-squares estimation of θ 
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Masing hysteretic models 

 Masing’s postulate (1926) for steady-
state hysteretic behavior of metals: 
Given an initial loading curve r =f (x) 
then for unloading: 

 
 

 For transient loading, Jayakumar (1987) 
showed that two hysteretic rules 
(extending Masing’s rule) give the  
same hysteretic behavior as Iwan’s 
DEM [J. App. Mech. 1966,67] 

 Models are defined by initial loading 
curve r =f (x) only (or yield strength 
distribution function for DEM) 

 No non-physical behavior since DEM 
corresponds to a parallel system of 
elasto-plastic elements 

0 0

2 2

r r x x
f

( ) ( )r f x f x
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Masing hysteretic shear building model 

 Model multi-story structure as a 
shear building with story shear 

forces ri related to inter-story drifts 
(xi-xi-1) by Masing model with initial 
loading curve (similar to Bouc-Wen): 

 

 

Ki = small-amplitude interstory stiffness 

ru,i = ultimate strength of story 

αi = yield transition parameter 

Initial force-deflection curve 

Corresponding to ri =fi (xi-xi-1): 
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Normalized deflection 
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Prior system analysis for system design 
 

 If failure probabilities                                 , we can improve 

efficiency by using advanced simulation methods: 

 Review article for reliability calculations in higher dimensions: 
Schueller et al., Prob. Eng. Mechanics (2004) 

 Special issue of Structural Safety (2007) on benchmark reliability 
problems in higher dimensions: Schueller & Pradlwarter (Eds) 

 e.g. Subset Simulation for general model dynamics 

 (Au & Beck: Prob. Eng. Mech. 2001, J. Eng. Mech. 2003) - uses 

successive batches of MCMC samples to adaptively create a nested 
sequence of subsets converging onto the failure region in input space 

 e.g. ISEE for linear model dynamics with Gaussian excitation  

 (Au & Beck: Prob. Eng. Mech. 2001) – uses importance sampling  

with a weighted sum of Gaussians, one for each elementary “failure” 
event at all discrete times 

FP =P[ | , ] 1n nY F U M
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Accuracy of MCS, Subset Simulation  

and ISEE for failure probability PF 

standard deviation
c.o.v.,

mean K

 Coefficient of variation of estimators for K samples 

F

1

P

 e.g. to get a c.o.v. of 35% for PF = 10-3 (resp. 10-4): 

 MCS requires about 10,000 (resp. 100,000) samples; 

 Subset Simulation requires 1500 (resp. 2000) samples; 

 ISEE requires 10 samples for any PF! 

MCS: 

Subset Simulation: 10 F| log P | , = (1)O

ISEE:            [decreases slightly as PF decreases!] 1
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Posterior probabilities of M d for various d 

 Probability of M d based on data D (Bayes’ Theorem): 

 

 

 Evidence: 

 

 Laplace’s asymptotic approximation about MLE 

Prior Likelihood 

Hessian matrix 

Evidence 

L
ˆ

= Optimal likelihood x Ockham factor 

EV( | ) ( | ) ( | , ) ( | )d d d dp p p dM M M MD D D

Hessian matrix: 
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Log evidence and AIC: Record #30 (X direction) 

d 

: d=10,12,…,58,60 

Scaled AIC = Optimal log likelihood 

    - no. of parameters 

Log evidence ≈ Optimal log likelihood 
        - log Ockham factor 
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MAP estimates and coefficient of variation (CV) 

 

Absolute values of correlation coefficients 

Modal parameters: MAP estimates, 
precision and correlation from Record #30 

| jk| 

MAP 
CV (%) 


