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Abstract

This paper presents the reliability analysis of three benchmark problems using three variants of Subset Simulation. The
original version of Subset Simulation, SubSim/MCMC, employs a Markov chain Monte Carlo (MCMC) method to sim-
ulate samples conditional on intermediate failure events; it is a general method that is applicable to all the benchmark
problems. SubSim/Splitting is a variant of Subset Simulation applicable to first-passage problems involving deterministic
dynamical systems. It makes use of trajectory splitting for generating conditional samples. Another variant, SubSim/
Hybrid, uses a combined MCMC/Splitting strategy and so it has the advantages of MCMC and splitting; it is applicable
to uncertain and deterministic dynamical systems. Results show that all three Subset Simulation variants are effective in
high-dimensional problems and that some computational efficiency can be gained by exploiting and incorporating system
characteristics into the simulation procedure.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When designing new civil, mechanical or aerospace systems that will experience dynamic excitation in their
operating environment, it is desirable to quantify the predicted performance of a proposed design in terms of
the reliability that it will achieve the specified design objectives. In view of the uncertainties about the mod-
eling of systems and about the future dynamic excitation the system will experience, the design team can spec-
ify a set of possible dynamic inputs and a set of possible models of the system and then choose probability
distributions over these sets to model the uncertainties. One can then evaluate the ‘failure probability’ of
the design that measures how likely the system will achieve the desired performance over its operational life-
time, based on available information and the probability models chosen to represent the missing information
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PF) = [ 10< o= [ o) (1)

This equation specifies the probability that ©@ € R” lies in the failure region F C R”, given the probability mod-
el that specifies the PDF (probability density function) ¢ for @ containing all the uncertain-valued parameters
needed to define completely the excitation and model of the system. Here, (-) is an indicator function that is
equal to 1 when its argument is true and is equal to zero otherwise. The formulation for the failure probability
in (1) is general and is applicable to static and dynamic reliability problems. Over the past few decades, a num-
ber of reliability methods have been developed that are effective when the number of variables # is not too
large or when the failure surface has limited complexity. Excellent reviews can be found at different stages
of development, e.g. [1-4].

In recent years, attention has been focused on reliability problems with complex system characteristics and
with high dimensions (i.e., with a large number of uncertain or random variables) [5]. High-dimensional prob-
lems are frequently encountered in reliability problems involving stochastic processes or random fields, whose
discretized representation requires a large number of i.i.d. (independent and identically distributed) variables.
Ideally, the dimension of a reliability problem should be determined based on modeling reasons rather than be
limited by the capability of reliability methods. Stochastic simulation methods provide an attractive means for
solving high-dimensional problems, especially for complex systems where analytical results or knowledge
about the dependence of the response on the excitation and modeling parameters are rarely available.

The best known and most robust stochastic simulation method is direct Monte Carlo Simulation (MCS),
where the failure probability is estimated by simple statistical averaging of the indicator function

P(F) ~ % Zl(Qk €F) (2)

where {@;:k =1,..., N} are i.1.d. samples drawn from the PDF ¢. A system analysis is required for each sam-
ple @, to check whether it corresponds to failure (/(@ € F) = 1) or not (/(@ € F) =0). While MCS is appli-
cable to all types of reliability problems, its computational efficiency is a practical concern when estimating
small failure probabilities because information must be gained from samples that correspond to failure but
these are rarely simulated. A rule of thumb for MCS is that one must generate at least 10 failure samples
to get a reasonably accurate estimate of P(F) from (2), so if P(F) = 0.001, at least 10000 system analyses must
be performed when estimating P(F). This has motivated recent research to develop more efficient stochastic
simulation algorithms for high-dimensional dynamic reliability problems. A basic and important feature of
most stochastic simulation methods is that they estimate the integral for P(F) by gaining information about
the system behavior through sampling @ from some probability distribution and then using information from
these samples to account for the failure probability.

Schueller and co-workers recently organized a benchmark study on reliability estimation in higher dimen-
sions of structural systems [6] with a goal to assess the performance of available numerical techniques. The
benchmark problems comprise high-dimensional static and dynamic problems with uncertainties in system
and loading properties. This paper presents the application of a stochastic simulation technique called ‘Subset
Simulation’ to the benchmark problems. An overview of the method is presented first in the next section.

2. Subset Simulation

Subset Simulation [7,8] is an adaptive stochastic simulation procedure for efficiently computing small fail-
ure probabilities. Strictly speaking, it is a procedure for efficiently generating samples that correspond to spec-
ified levels of failure probabilities in a progressive manner. The method is motivated by the observation that
the inefficiency of direct MCS in reliability problems arises essentially from the need to estimate small failure
probability, or equivalently, from the need to generate rare failure samples. This leads to the question as to
whether rare-event simulation can be avoided in finding small failure probabilities. The simple but pivotal idea
behind Subset Simulation is that a small failure probability can be expressed as a product of larger conditional
failure probabilities for some intermediate failure events, suggesting the possibility of converting a problem
involving rare-event simulation into a sequence of problems involving more frequent events.
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This idea can be expressed as follows. Let F denote the target failure region in the space of the variables ©®
and let F; D F, D --- D F,, = F be a chosen sequence of m nested failure regions. By the definition of condi-
tional probability

P(F) = P(Fu|Fp1)P(Fp1) = :P(FI)HP(Fi|Fi—I> 3)
i=2
This equation indicates that instead of directly calculating a small P(F), one can in principle calculate the prob-
abilities P(Fy), P(Fj|F;_) (i =2...,m) and then take their product. The potential advantage of this alternative
is that the probabilities involved can be chosen to be much greater than P(F), thus avoiding simulation of rare
events. Several implementation issues immediately arise, however: (1) How to select the intermediate failure
events F; (i=1...,m — 1), and (2) how to estimate the conditional probabilities P(F}|F;_;) (i=2...,m)?
The first question regarding the choice of intermediate failure regions is addressed by specifying a general
parametric form to define the failure region and to decide on the number of intermediate failure regions as well
as their conditional failure probabilities. The strategy in Subset Simulation is to assume that F can be gener-
ically represented as the exceedance of a critical response quantity ¥ > 0 above some specified threshold level
¥, SO

F={r>y) )

Remarkably, this representation does not lead to much loss of generality. For example, if ;>0 (i=1,...,m)
‘min’ in the same order corresponding to each occurrence of union (U) and intersection (N) in F, respectively.
By considering P(F) = P(Y > y) for different values of y, one can investigate the exceedance probability curve
as a function of the threshold y, which is more informative than just a point estimate of P(F) = P(Y > 1). No-
tice that calculating P(F) = P(Y > y) as a function of y is equivalent to finding the complementary CDF
(cumulative distribution function) of the response quantity Y, where the complementary CDF =1 — CDF,
and this can be achieved down to very low probabilities in the tail of this distribution because of the efficiency
of Subset Simulation.
Based on the representation of F in (4), the intermediate failure regions can be parameterized as

Fi={Y >y} (5)
where 0 <y, <...<y,, =y form an increasing sequence of intermediate threshold values. The question is then
how to choose {y:i=1,...,m — 1}. The intermediate threshold values will affect the ease of estimating the

conditional probabilities, because if y; | < y;, P(F;|F;_;) will be very small, and one will face a rare-event sim-
ulation problem as in direct MCS. Thus, the intermediate threshold values should be chosen close enough so
that the conditional failure probabilities are not small. They should not be chosen to be too close, however,
because then it would take a large total number of levels m (and hence large computational effort) to progress
to the target failure region of interest. A prudent choice should thus strike a balance between these two
extremes.

One may think that it would be difficult to know a priori what intermediate threshold values to choose in
order to induce reasonable values of the conditional probabilities, but this issue is resolved simply by adap-
tively choosing the intermediate threshold values so that the resulting sample estimates of the conditional fail-
ure probability correspond to a common specified value of py € (0.1,0.2), say. Specifying a common value for
the conditional probabilities is merely for convenience of implementation but it is also a reasonable choice. Let
{Y;,_1xk=1,...,N} be the response values corresponding to the conditional samples {@; ;:k=1,...,N}
distributed as ¢(-|F;_;). For a specified value of py, the intermediate threshold value y; defining F; through
(5) can be simply obtained as the [(1 — po)N]th largest value among {Y; k= 1,...,N} so that the sample
estimate of P(F; |F;_1) = P(Y > y,|Y>y; 1) is by construction equal to po. Here, it is assumed that p, and
N are chosen so that po/V is an integer. Subset Simulation is, in fact, primarily a procedure for generating
threshold values of response that correspond to some specified value of failure probability, rather than for
estimating failure probabilities at specified response values. One issue with this adaptive choice of y; is that
the conditional failure probability P(F;|F;_1) is not actually equal to py, but only its sample estimate is. In
implementations, one needs to choose N large enough so that the variability of y; and hence the error in
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P(F;|F;_y) = po is kept small. Due to the adaptive choice of intermediate failure events, the failure probability
estimates for a fixed response level is only asymptotically unbiased as N — oo and the bias is O(1/N).

On the other hand, estimating the conditional probabilities P(F;|F;_;) may appear to be difficult to resolve
because conditional probabilities are involved. Adopting a stochastic simulation approach, the conditional
failure probability P(F;|F;_;) can be estimated by the fraction of the number of samples lying in F;, where these
samples are generated according to the conditional PDF ¢(:|F;_). Generating these conditional samples is fea-
sible if one uses an acceptance/rejection algorithm, but this is not a computationally efficient approach because
a sample distributed as ¢(-|F;_) is obtained by accepting a sample generated according to ¢() that also lies in
F;_,. This does not avoid rare-event simulation because, on average, it requires 1/P(F;_;) samples (and hence
this many system analyses) to obtain one such conditional sample.

The original version of Subset Simulation [7,8] makes use of a powerful Markov Chain Monte Carlo
(MCMC) technique for generating conditional samples called the Metropolis—Hastings algorithm [9-11].
Originally developed for statistical physics problems, this algorithm allows efficient generation of random
samples according to an arbitrarily given probability distribution, even if it is not normalized. Due to their
versatility and relevance to diverse problems, MCMC methods have found application in a wide range of
fields, including astrophysics, image processing, biostatistics, phylogeny, etc [12].

Two newer variants of Subset Simulation have recently been developed that exploit the causality of dynam-
ical systems to use trajectory splitting to generate conditional samples for the Subset Simulation approach.
The first variant, Subset Simulation with Splitting (SubSim/Splitting) [13], is applicable to deterministic
dynamical systems subjected to stochastic excitations. The second variant, Subset Simulation with hybrid
MCMC/Splitting strategy (SubSim/Hybrid) [14], is applicable to uncertain and deterministic dynamical sys-
tems. These newer versions of Subset Simulation use the same adaptive procedure as the original version to
generate conditional samples for higher threshold levels based on those from lower levels. They differ only
in the way the next conditional sample is generated from the current one. Each of the three variants of Subset
Simulation are now described in more detail.

2.1. Subset Simulationl MCMC

The original version of Subset Simulation first appeared in [8] where a component-based Metropolis—Has-
tings algorithm was developed to overcome the rejection problems in high dimensions [7]. The method was
further generalized in [15] to incorporate knowledge about important variables into the procedure. In this
paper, the original Subset Simulation method is referred to as SubSim/MCMC because it is based on a Mar-
kov Chain Monte Carlo simulation method, the M-H (Metropolis—Hastings) algorithm [9,10]. In the M-H
algorithm, new random, or candidate, samples are generated by some proposal probability distribution chosen
by the user and they are accepted or rejected based on a rule depending on the ratio of the desired target prob-
ability distribution to the proposal distribution. The proposal distribution governs the choice of the candidate
sample, and consequently the efficiency of this MCMC procedure. It should be chosen so that the correlation
among the Markov chain samples is small, as this reduces the amount of independent information available
for statistical estimation through averaging and, hence, reduces efficiency. The next Markov chain sample cor-
relates with the current one through two basic mechanisms: (1) the candidate sample is rejected and the current
sample is taken as the next sample; (2) the candidate sample is accepted but it is in close proximity (due to the
choice of the proposal distribution) to the current sample. A prudent choice of proposal distribution should
make a balance between these two factors. Experience shows that the efficiency of Subset Simulation is not
especially sensitive to the choice of proposal PDF, although improvements can often be made by tailoring
it to a particular application. Details for the choice of proposal PDF in dynamic reliability problems can
be found in [15].

The procedure for adaptively generating samples of @ conditional on F; (i = 1,...,m) is summarized as fol-
lows. First, N samples {@g:k =1,...,N} are simulated by direct Monte Carlo simulation and so they are
1.i.d. as the original parameter PDF ¢. The subscript ‘0’ here denotes that the samples correspond to ‘Condi-
tional Level 0’ (i.e., unconditional). The corresponding values of the critical response { Y k= 1,...,N} are
then computed. The value of y; is chosen as the [(1 — po)N]th value in the ascending list of { Yok =1,..., N},
so that the sample estimate for P(F;) = P(Y > y;) is always equal to py.
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Due to the choice of y;, there are poN samples among {@gxk=1,...,N} whose response Y lies in
F; ={Y > y;}. These are samples at ‘Conditional Level 1’ and are conditional on F;. Starting from each of
these samples, the M—H algorithm is used to simulate an additional (1 — py)N conditional samples so that
there is a total of N conditional samples at Conditional Level 1. For details of the M—H algorithm used in
Subset Simulation/MCMC, the reader is referred to [7] or [15]. The value of y, is then chosen as the
[(1 — po)N]th value in the ascending list of { Y7 42k =1,..., N}, and it defines F, = { Y > y,}. Note that the sam-
ple estimate for P(F>|F)) = P(Y > y,| Y > y;) is automatically equal to po. Again, there are poN samples lying in
F,. They are samples conditional on F, and provide ‘seeds’ for applying the M—H algorithm to simulate an
additional (1 — pg)N conditional samples so that there is a total of N conditional samples at Conditional Level
2.

This procedure is repeated for higher conditional levels until the samples at Conditional Level (m — 1) have
been generated. If the target probability of failure is specified as P(F) = pj, then y,, is chosen as the
[(1 — po)N1th value in the ascending list of {Y,, ;k=1,...,N}. In general, for any specified value of y,
P(Y > y) is estimated as

N
v 2o I(Yor > ) y <y

=
Il

N
P(Y>y)z p6ilﬁzl(yi—1,k>J’) yi71<y<yi7i:2a"'7m (6)

N
Pﬁ’flﬁ DAYk >y) y>y,

2.2. Subset Simulation/Splitting

SubSim/Splitting exploits a causality feature of deterministic dynamical systems subjected to additive
stochastic excitations to generate the next conditional sample from the current one, namely, the distribu-
tion of the future excitation after the first-passage time is just the original distribution conditional on the
past excitation. Let U" be the future excitation after the first passage time for the ith intermediate failure
event F; and U~ be the past excitation, i.e., @ =[U ,U'] is the current conditional sample. By Bayes’
theorem

_ P(Fi|g+7gi)

pUT|F,U") = PUTU) =PUU) (7)

P(Fi|U~) T

since P(F)JU",U")=1 and P(F)JU ) =1, a direct consequence of the hypothesis that the system fails when
the excitation before the passage time is U . This shows that, given the excitation U~ before the first-passage
time, the distribution of the future excitation U' conditional on failure is just equal to its original distribu-
tion (given U ). The implication is that a random sample of excitation time-history conditional on being in
an intermediate failure region can be used to generate a new failure sample by keeping the current sample up
to the first-passage time and then randomly generating the post-failure portion by direct Monte Carlo sim-
ulation. Due to the manner in which the new conditional sample is generated from an excitation time-history
sample, the procedure is called splitting (e.g., [16,17]). One case where the future excitation conditioned on
the past excitation can be easily sampled is a stochastic excitation defined by a windowed filtered white-noise
process.

The advantage of SubSim/Splitting is that the next conditional sample is always distinct from the current
one, in contrast to SubSim/MCMC where the next sample may be identical to the current one due to the
rejection of the candidate sample in the M—H algorithm. The ‘off-spring’ conditional failure samples gener-
ated by splitting from the same ‘mother’ conditional failure sample have independent components after the
first-passage time but the same components prior to this time. In principle, to obtain a new conditional sam-
ple by splitting, only the portion of the response time history after the first-passage point needs to be com-
puted, as distinct from SubSim/MCMC where the full response time history needs to be computed. Thus,
when the total numbers of trajectories are the same, the computational cost for SubSim/Splitting will usually
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be less than that for SubSim/MCMC. This, of course, assumes that provisions have been made in the
dynamic analysis software to keep track of the first passage time during time-stepping so that computation
of the remaining portion of the response time history can be performed in an automated fashion. The aver-
age computational effort required for producing an offspring at the ith conditional level is only 1 — E[T{F,)/
T of the equivalent of one sample (with full time history of duration 7" analyzed), where E[T/|F}] is the con-
ditional expected first passage time. For the results presented later in Table 4, the number of samples N
reported for SubSim/Splitting represents this equivalent number of samples by taking advantage of this com-
putational saving.

One disadvantage of SubSim/Splitting is that the generated conditional samples do not explore efficiently
the whole failure region because the components of the offspring samples prior to the first-passage time are
identical to the mother conditional failure sample. Another drawback is that SubSim/Splitting does not apply
to problems with uncertain system parameters. This is because, for a given excitation, the location of the first-
passage point may depend on the system parameters. Note that SubSim/MCMC does not have this issue since
the MCMC procedure is still valid for non-causal systems. These drawbacks are resolved by SubSim/Hybrid,
which combines MCMC and splitting for generating the next sample.

2.3. Subset Simulation/Hybrid

Subset Simulation with a hybrid strategy, referred to as SubSim/Hybrid, explores the failure region prior to
first-passage times using an MCMC method while taking advantage of causality by using trajectory splitting
after the first-passage time. To generate the next sample from the current one, a candidate sample of the exci-
tation and uncertain system parameters, if any, is first generated using the M—H algorithm and the corre-
sponding response Y is computed. If it lies in the failure region, the next sample is obtained by splitting
the excitation corresponding to this candidate sample at the first-passage time with the system parameters
fixed at the candidate values. Otherwise, the next sample is obtained by splitting the excitation of the current
sample with the system parameters fixed at the current values. In either case, the response Y for the next sam-
ple must be evaluated.

SubSim/Hybrid requires more than one response evaluation for generating the next conditional sample
from the current one. If the response is always computed for the whole time history, then SubSim/Hybrid
requires two response evaluations per conditional sample. On the other hand, if provision is made in the soft-
ware so that the response is computed only up to or after the first-passage time, it can be argued that the equiv-
alent average number of response evaluations per conditional sample at the ith conditional level is roughly
given by 1 + (1 — E[TJF;)/T)Pg, where T and E[T/{F;] are the total duration of study and conditional expected
first-passage time, respectively, and Py is the candidate rejection probability in the MCMC procedure. For
example, if E[T/F;)/T = 0.4 and Pg = 0.5, then SubSim/Hybrid requires on average 1.30 evaluations per con-
ditional sample. This equivalent number of evaluations is considered in this study when assessing the compu-
tational efficiency of the method.

Since SubSim/Hybrid is based on SubSim/Splitting, it also requires a causal system and the condition that
the current excitation conditioned on the past excitation can be easily sampled. Also note that since the
MCMC procedure is employed before the first-passage points for SubSim/Hybrid, it is applicable for dynam-
ical systems with uncertain system parameters.

3. Benchmark reliability problems

The three Subset Simulation methods are applied to the reliability benchmark problems defined in [6]. This
section briefly describes the cases under study.

3.1. Problem 1 — An embankment dam
In Problem 1, the reliability of a dam with random soil properties subjected to deterministic gravity load is

analyzed. Three cases, corresponding to different values of ¢ (cohesive strength) and ¢ (friction angle), are
studied and they are denoted by Prob.1.1, Prob.1.2 and Prob.1.3 in Table 1.
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Table 1
Cases for Problem 1
Ref. ¢ (kPa) ¢
Prob.1.1 125 30°
Prob.1.2 225 22°
Prob.1.3 150 40°
Table 2
Cases for Problem 2
Uncertainty/Nonlinearity Failure defined w.r.t. Response threshold level (mm) Ref.
Deterministic Nonlinear First story 0.047 Prob.2.1.1.1
0.052 Prob.2.1.1.2
Top story 0.024 Prob.2.1.2.1
0.028 Prob.2.1.2.2
Random Linear First story 0.057 Prob.2.2.1.1
0.073 Prob.2.2.1.2
Top story 0.013 Prob.2.2.2.1
0.017 Prob.2.2.2.2
Random Nonlinear First story 0.050 Prob.2.3.1.1
0.058 Prob.2.3.1.2
Top story 0.024 Prob.2.3.2.1
0.033 Prob.2.3.2.2

3.2. Problem 2 — MDOF Duffing-type oscillator

In Problem 2, the first-passage probability of the inter-story drift of a ten-degree-of-freedom Duffing-type
oscillator subjected to stochastic excitation is considered. Three cases are treated, corresponding to different
structural nonlinearity and uncertainties. In Case 1, the system is nonlinear with deterministic properties. In
Case 2, the system is linear but its mass, stiffness and damping properties are unknown and their uncertain
values are described by specified probability distributions. Case 3 is derived from Case 2 with system nonlin-
earity as in Case 1. These three cases are indexed by Prob.2.1, Prob.2.2 and Prob.2.3 in Table 2. Each case
branches into two sub-cases that consider failure of either the first or the top story. In each sub-case, two
threshold levels of failure are considered. As an example of the labeling convention, Prob.2.1.2.1 corresponds
to Problem 2, Case 1 (deterministic-nonlinear system), for failure of the top story over the first specified
threshold level. The cases are summarized in Table 2.

3.3. Problem 3 — MDOF bilinear shear building

In Problem 3, the first-passage failure of a five-story shear building with bilinear inelastic inter-story stiff-
ness is considered. The stochastic excitation is represented in the spectral domain by 200 random variables
representing random spectral amplitudes. The system properties, including mass, damping and stiffness, are
uncertain. Two cases are considered, one corresponding to failure at the first story and the other failure at
the top story. In each case, failure of two threshold levels is considered. Each scenario is thus identified by
three indices. For example, Prob.3.1.2 denotes Problem 3, Case 1 (failure at first story), over the second spec-
ified threshold level. The cases are summarized in Table 3.

4. Results

SubSim/MCMC is applied to all three benchmark problems as it is applicable to general reliability prob-
lems. SubSim/Splitting is applied to Problem 2 Case 1 only, because it is only applicable to deterministic
dynamical systems. SubSim/Hybrid is applied to Problem 2 only, since it is only applicable to dynamical sys-
tems but it can handle both deterministic and uncertain systems.
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Table 3

Cases for Problem 3

Failure defined w.r.t. Response threshold level (mm) Ref.

First story 0.032 Prob.3.1.1
0.039 Prob.3.1.2

Top story 0.022 Prob.3.2.1
0.032 Prob.3.2.2

In all the problems, Subset Simulation is applied with a conditional failure probability at each level equal to
po = 0.1 and with the number of samples set to N = 500 at each conditional level. The number of conditional
levels is chosen to cover the required response level whose failure probability is estimated. For SubSim/
MCMC and SubSim/Hybrid, the proposal PDF for each uncertain parameter is chosen as a uniform PDF
centered at the current sample with width equal to twice of its standard deviation.

Table 4 summarizes the results for the three variants of Subset Simulation. For all cases, 50 independent
runs have been carried out, from which the sample average value and coefficient of variation (c.o.v.) of failure
probability can be obtained. The former is reported under the column titled “P(F)” and the latter under the
column titled ““6”. It should be noted that ¢ is representative of the c.o.v. of the failure probability for any run
and so the c.0.v. of P(F) in the table (an average value from 50 runs) is §/+/50. The total number of samples
used for each run is denoted by N7 in the table. For SubSim/MCMC, Ny= N + N(1 — po)(m — 1) where m is
the number of simulation levels needed to cover the failure probability of interest; e.g., m = 3 for Problem 1.1
because P(F) =1.6 x 107> > (0.1)’ = py. For SubSim/Splitting and SubSim/Hybrid, N7 is the equivalent
number of samples used in a single run (averaged over 50 runs) accounting for the fact that for a new condi-
tional sample generated by splitting, only the response time history after the first-passage time needs to be
computed. Since any stochastic algorithm for estimating P(F) has a c.o.v. of the form § = 4/+/Ny, the ‘unit
c.0.v.’” 4 presented in Table 4 gives a measure of efficiency that is inherent to the algorithm, that is, it is in
theory invariant to the accuracy achieved and the computational effort spent. Of course, smaller values of
A correspond to higher computational efficiency. Note that, although the c.o0.v. é and the unit c.o.v. 4 are esti-
mated empirically here by their sample values from repeated simulation runs, approximate expressions for ¢

Table 4
Benchmark study results
Problem MCS* SubSim/MCMC SubSim/Splitting SubSim/Hybrid
P(F) Ny 4 P(FF & Ny A PF° & Ny A PF° & Ny 4
1.1 1.7e—=3  107.602 0.07 24 1.6e—3 0.37 1400 14
1.2 2.2e—5 401.000 034 213 4.0e-5 085 2300 41
1.3 34e—4 247.375 0.11 54 3.1le—4 0.59 1850 25

2.1.1.1 1.5e—4  74.650e6 0.01 82 1.6e—4 048 1850 21 2.0e—4 041 1295 15 2.0e—4 033 2128 15
2.1.1.2 54e—6  74.650e6 0.05 430 6.5e—6 086 2750 41 89e—6 0.64 1925 28 9.0e—6 045 3163 25
2.1.2.1 4.6e—5  74.650e6 0.02 147 4.7e-5 0.89 2300 43 5.6e-5 0.69 1380 26 6.2¢-5 0.36 2645 19
2122 39e—6  74.650e6 0.06 506 3.7e—6 091 2750 48 53e—6 1.15 1925 50 S5.7¢e—6 040 3163 22

2.2.1.1 l.le—4  29.750e6  0.02 95 12¢e—4 0.77 1850 33 l.le—4 041 2128 19
2212 8.1le—7  29.750e6 0.21 1111 1.0e—6 0.99 2750 52 l.le-6 0.77 3163 43
2221 49e—5  29.750e6 0.03 143 6.6e—5 0.58 2300 28 59e—5 046 20645 24
2222 2.5¢e=7  29.750e6 0.39 2000 4.7e—7 0.78 2750 41 32e—7 0.74 3680 45
2.3.1.1 9.3e—5  45.400e6 0.01 104 1.le—4 0.44 1850 19 l.le—4 039 2128 18
23.1.2 1.3e—6  45.400e6 0.13 877 1.5¢e—6 0.73 2750 38 1.8e—6 0.60 3163 34
2321 8.9e—5  45.400e6 0.01 106 1.le—4 0.59 1850 25 1.2e—4 036 2128 17
2322 6.2e—7  45.400e6 0.17 1270 1.3e—6 0.88 2750 46 1.3e—6 0.50 3163 28
3.1.1 6.0e—5 122.000e6 0.01 129 1.7e-5 0.61 2300 29
3.1.2 1.2e—6 122.000e6 0.08 913 1.8e—7 1.05 2750 55
3.2.1 2.4e—4 122.000e6 0.01 65 22¢—4 041 1850 18
322 9.0e—7 122.000e6 0.10 1054 7.2e—7 0.71 3200 40

4 Values from [6].
® Based on 0 = \/[1 — P(F)]/P(F)N7.
¢ Average value from 50 independent runs, each with a c.o.v. of 4.
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and 4 based on information from a single run are available for SubSim/MCMC [8], SubSim/Splitting [13] and
SubSim/Hybrid [14].

Results presented in Table 4 for direct Monte Carlo simulation (MCS) are from [6]. Most of the MCS
results are produced with high accuracy in terms of the c.o0.v. and so they serve as a benchmark for compar-
ison. From Table 4, it is seen that the average values of failure probability produced by SubSim/MCMC
mostly agree with the results of MCS to within one or two standard deviations but there are a few exceptions.
It may be that the c.o.v. for SubSim/MCMC has been underestimated in these cases but the reason for these
discrepancies has not been resolved.

The average values of the failure probability computed by SubSim/Splitting and SubSim/Hybrid generally
agree with SubSim/MCMC to within their estimation error. Exceptions are Problems 2.1.1.1 to 2.1.2.2 and
Problem 2.2.2.2. The results of SubSim/Splitting and SubSim/Hybrid generally agree, although they both tend
to overestimate the failure probabilities for Problems 2.1.1.1 to 2.1.2.2. It is doubtful whether such discrepan-
cies are due to statistical error, theoretical bias (recalling that Subset Simulation is only asymptotically biased),
different parameters used, a combination of these factors, or even programming bugs in the software imple-
menting the algorithm. This last factor cannot be totally eliminated, although some consistency checks have
been done and it is noted that these discrepancies did not appear in the results for the benchmark problems as
originally defined in Communication 3. For reference, the results of SubSim/MCMC were computed by the
first co-author (SKA) and those of SubSim/Splitting and SubSim/Hybrid were computed by the second co-
author (JC) on independent computing systems using Matlab as a computational platform.

Fig. 1 plots the unit c.0.v. A versus failure probability P(F) for SubSim/MCMC for the different cases stud-
ied. It is seen that the unit c.0.v. for SubSim/MCMC varies roughly in a logarithmic manner, i.e. 4 is approx-
imately proportional to log[1/P(F)], while for direct Monte Carlo Simulation (MCS), it grows drastically as
A~ 1/4/P(F) for small P(F). The logarithmic character is a direct result of solving a rare-event simulation
problem by a series of frequent conditional failure events. Whereas the slope of the logarithmic trend may
be problem dependent, the logarithmic character holds for all the problems studied, suggesting that it is robust
with respect to the type of applications; in fact, a theoretical analysis shows that 4 is approximately propor-
tional to log[1/P(F)] [15]. SubSim/MCMC appears to perform better in Problem 3 (shown with squares) than
in Problem 1 (shown with circles) as the c.o.v. for the former are generally lower for similar failure probability
levels.

Fig. 2 compares the results among the three variants of Subset Simulation for Problem 2. Similar to Sub-
Sim/MCMC, the unit c.o.v. for SubSim/Splitting and SubSim/Hybrid grow in a logarithmic fashion with
decreasing failure probability. The splitting and hybrid algorithms lead to lower values of unit c.o.v,, i.e.,
higher efficiency, with only one exception for SubSim/Splitting. Of course, this is at the expense of their gen-
erality in applications since SubSim/Splitting and SubSim/Hybrid are limited to first-passage reliability prob-
lems of dynamical systems.
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Fig. 1. Performance of SubSim/MCMC for all problems.
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Fig. 2. Performance among variants of Subset Simulation in Problem 2.

5. Conclusions

Three variants of Subset Simulation are applied to three reliability benchmark problems. The original ver-
sion of Subset Simulation based on the Metropolis—Hasting algorithm is applicable to all three problems. The
two variants of Subset Simulation that utilize splitting, demonstrate that efficiency can be gained by incorpo-
rating knowledge about system characteristics into the simulation procedure. For all three variants, the unit
c.o.v. varies logarithmically with failure probability and they therefore lead to substantial gains in computa-
tional efficiency over direct Monte Carlo simulation. This logarithmic trend is a direct consequence of convert-
ing a rare-event simulation problem into a series of problems with more frequent failure events.
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