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ABSTRACT: An asymptotic approximation is developed for evaluating the probability integrals that arise in
the determination of the reliability and response moments of uncertain dynamic systems subject to stochastic
excitation. The method is applicable when the probabilities of failure or response moments conditional on the
system parameters are available, and the effect of the uncertainty in the system parameters is to be investigated.
In particular, a simple analytical formula for the probability of failure of the system is derived and compared
to some existing approximations, including an asymptotic approximation based on second-order reliability meth-
ods. Simple analytical formulas are also derived for the sensitivity of the failure probability and response
moments to variations in parameters of interest. Conditions for which the proposed asymptotic expansion is
expected to be accurate are presented. Since numerical integration is only computationally feasible for investi-
gating the accuracy of the proposed method for a small number of uncertain system parameters, simulation
techniques are also used. A simple importance sampling method is shown to converge much more rapidly than
straightforward Monte Carlo simulation. Simple structures subjected to white noise stochastic excitation are used
to illustrate the accuracy of the proposed analytical approximation. Results from the computationally efficient
perturbation method are also included for comparison. The results show that the asymptotic method gives
acceptable approximations, even for systems with relatively large uncertainty, and in most cases, it outperforms

the perturbation method.

INTRODUCTION

It is important in reliability based design, and in other en-
gineering problems, to analyze the moments and reliability of
structures with uncertain properties subjected to uncertain
loads. It is clear, for example, that when a structure is being
designed, the environmental loads that the built structure will
experience in its lifetime are highly uncertain. Also, response
predictions are made during design based on structural models
whose parameters are uncertain, because the properties that
will be exhibited by the structure when completed are not
known precisely.

The uncertain load time history needed in a dynamic anal-
ysis of a structure subjected to environmental loads such as
earthquakes and wind, is an uncertain-valued function, and so
is best modeled by a stochastic process. If the structural pa-
rameters are known precisely, then the system reliability and
response moments can be calculated using well-known tech-
niques, usually approximate, from random vibration theory. In
the more realistic case where the values of the structural pa-
rameters are uncertain, these uncertainties are often modeled
using a prescribed joint probability density function. The sys-
tem reliability and response moments are then given by the
total probability theorem as particular integrals over all the
uncertain parameters. Exact analytical solutions for the relia-
bility and response moments can then be found for only a very
limited number of simple systems. Even numerical solutions
are limited to cases where there are only a few uncertain pa-
rameters, such as the reliability of single degree of freedom
systems [e.g., Spencer and Elishakoff (1988)]; otherwise, the
computational cost becomes prohibitive. For more realistic
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systems, Monte Carlo simulation (Rubinstein 1981) can be
used to provide more accurate results for both the moments
of the response and the system reliability. This method, how-
ever, is also computationally very expensive, and often unaf-
fordable, since it requires a very large number of structural
analyses to be performed in order to obtain sufficiently accu-
rate results,

First-order and second-order reliability methods (FORM
and SORM) have been developed to provide economical com-
putational tools for approximating the structural reliability of
uncertain systems when both the system and load uncertainties
can be modeled as uncertain-valued variables. The application
of the FORM method requires the transformation of the set of
variables used to model the uncertainties into the “standard’’
space of independent normal variables (Madsen et al. 1986).
SORM may be formulated either in the space of original var-
iables (Breitung 1991) or in the standard normal space [see,
for example, Der Kiureghian et al. (1987)]. For the former
formulation, a sound mathematical foundation based on as-
ymptotic analysis was developed by Breitung (1991). FORM
or SORM can also be combined with importance sampling
techniques to yield accurate estimates of the probability of
failure by substantially reducing the number of Monte Carlo
simulations required (Schueller and Stix 1987; Bucher 1988).

In recent years, the FORM and SORM methods have also
been extended to compute structural reliability for uncertain
dynamic systems subjected to stochastic loads such as future
earthquakes. They have been applied to the situations where
the conditional failure probability for a given set of system
parameters is computed from approximations for the first-pas-
sage problem from conventional random vibration theory. The
methods have been tested for a variety of structural problems,
including simple linear and nonlinear systems (Wen and Chen
1987), primary-secondary systems (Igusa and Der Kiureghian
1988), and even hysteretic and geometrically nonlinear multi-
degree-of-freedom structures (Cherng and Wen 1994). These
studies show that the structural uncertainties can have a sub-
stantial effect on the reliability of dynamic systems excited by
stochastic loads.

Approximate methods for efficiently computing the re-
sponse moments of dynamic systems have also been devel-
oped. The perturbation method, which is computationally the
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least expensive method, works well only for limited cases and
for relatively small levels of uncertainties (Koyluoglu 1995).
Often it fails to give satisfactory and consistent results, such
as in the case of primary-secondary systems, even if the level
of uncertainties is small (Singh 1980; Papadimitriou et al.
1995). Alternative approaches (Jensen and Iwan 1992; Papa-
dimitriou et al. 1995) based on expanding the conditional mo-
ments of the response for given values of the uncertain system
parameters in terms of a series of orthogonal functions of these
parameters can be used to overcome these deficiences and pro-
vide accurate results. However, these orthogonal expansion
methods require excessive computational effort and computer
storage for large or even medium-sized systems, and for cases
where many uncertain variables are involved. Also, they only
apply to a limited class of systems, such as linear systems and
nonlinear elastic systems with polynomial type nonlinearities.

In the present study, a new technique based on Laplace’s
method for asymptotic approximation of integrals is presented
for evaluating the type of probability integrals encountered in
the analysis of reliabilities or response moments of uncertain
systems subject to stochastic excitations. The methodology ap-
plies when the conditional reliabilities or conditional expec-
tations of response quantities are available for each value of
the uncertain system parameters. It is shown that for comput-
ing failure probabilities, the new method is simpler than ex-
isting second-order reliability methods developed to treat these
types of problems. Simple formulas are also provided for com-
puting the sensitivity of the failure probabilities and moments
to system parameters. The proposed method is applied to some
simple systems to demonstrate its accuracy. To provide a basis
for evaluating this accuracy, accurate numerical solutions for
the failure probabilities and response moments are computed
by numerical integration and by two simulation methods:
straightforward Monte Carlo simulation and an importance
sampling technique. The latter proves to be the most efficient
way to obtain accurate numerical solutions. On the other hand,
the proposed asymptotic method usually gives acceptable ac-
curacy with much less computation.

APPROXIMATIONS FOR CLASS OF PROBABILITY
INTEGRALS

Consider the general class of multidimensional integrals of
the form

I= f h(8)p(8) de o)
8

where h(0) and p(8) = smooth functions for 8 € @; p(0) =
probability density function; and ® = subregion of R". Among
other applications, this integral arises in the analysis of the
response moments and reliability of uncertain systems sub-
jected to stochastic excitations. Rarely, if ever, can (1) be in-
tegrated analytically. Numerical integration can be very costly
and is usually unaffordable for more than a few variables.
Simulation methods may also require a very large number of
integrand evaluations in order to get accurate results. Each
integrand evaluation requires 4(8) to be calculated for some 6
value, and this often requires a computationally expensive
structural analysis. An asymptotic formula is next presented,
which provides an analytical approximation for the integral (1)
and which requires only a relatively small number of A(0)
function evaluations.

Asymptotic Approximation

The asymptotic approximation is based on an expansion of
the logarithm of the integrand about the point that corresponds
to the maximum of the integrand. Consider the case for which
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the integrand in (1) has a single local maximum 0* inside O,
which is the global maximum over ®. The idea is to rewrite
the integral in the form

I= f expli(8)] d6 10
e

where
K(0) = In A(B) + In p(0) 3)

and expand /(0) about its maximizing point, which is also 8*.
The following set of equations is satisfied at 8*:

i=1,...,n @)

provided that 8* occurs inside the region O, as assumed. How-
ever, rather than solving (4), the value of 0* is obtained by
applying a standard minimization algorithm to —1(8).

If 1(8) is expanded about 8*, noting that its derivatives are
zero at 0%, one finds that

T

1 n n
I= f exp [1(9*) T2 E 2 Ly (0*)(8, — 8)(6; — 6/)
L]

+ E(()):I dae
(5)

where L;(0), the (i, j)) component of the Hessian matrix 1.(8)
of —1(0), is given as

9’1(8)

L,®) = " 96,00,

(6)

The integral can be simplified to

n

1 n
I = h(O*)p(0*) f exp [—5 DD Ly ©0%)(6: — 87X, — e,*)]
(2]

iwl  fm]
-explE(8)] dO @)

By applying Laplace’s method of asymptotic expansion to
the integral (Bleistein and Handelsman 1986), an asymptotic
approximation for [ is obtained

1
1(8*) ~ (2m)""h(8*)p(0*) L") ®

which is independent of the expansion error because E(9*) =
0. This approximation is valid for A > 0, where X =
min; {\,{L(0%)]} and \,{L(0%*)] is the ith eigenvalue of the Hes-
sian matrix L(0) evaluated at 8*. Furthermore, the approxi-
mation is asymptotically correct as A — . Specifically, the
larger the value of A, the sharper the peak of the integrand at
0* and therefore the more accurate the value of the asymptotic
approximation is expected to be.

In the case of a finite number of local maxima in ®, say
0F,j=1,...,r, the proposed procedure is modified by simply
summing the asymptotic contributions [(8)] computed for each
maximum point 0}¥; that is

r

1= K8}) ()

a1

This result follows directly from the fact that the integral /
can be decomposed into a finite sum of integrals over the
disjoint subregions of a partition of ®, where each subregion
contains one and only one maximum point. Of course, some
of the contributions in (9) may not be significant.




The computationally most expensive operation in the
asymptotic expansion is the search for the maxima points
0. In some practical applications, only one local maximum
exists inside the region @, and so it can be readily computed
using a local maximization method such as the modified-New-
ton method. In the case of multiple maxima, more sophisti-
cated optimization methods are required, such as homotopy
and relaxation techniques, which are used to reliably obtain
most maxima points 8} (Yang and Beck 1997). The compu-
tation of the gradient and Hessian of —/(0) are required in the
aforementioned optimization schemes. These computations
could be carried out numerically using finite difference
schemes. However, depending on the application, analytical
expressions for the gradient and the Hessian of —/(8) can be
developed, thus avoiding possible errors arising from finite
difference approximations.

Second-Order Perturbation

The second-order perturbation method offers an approxi-
mation of the integral with minimal computational effort. It is
based on expanding 4(@) into a Taylor series about the mean
® of 0. Carrying out the expansion and retaining up to second-
order terms yields

_ 1 n n
I=h® + 52 > T,@)V, (10)
i=1  j=l
where
_ °n(®)
T, (®) = 6,36, (b

= (i, j) element of Hessian matrix of h(0); and V,, = elements
of covariance matrix of uncertain parameter vector 6 under
probability distribution p(8)

Vi = E[(8; — )8, — )] 2)

Importance Sampling

Importance sampling techniques have been used in reliabil-
ity analysis (Schueller and Stix 1987; Bucher 1988) to provide
accurate estimates of the failure probabilities by substantially
reducing the large and possibly prohibitive computer effort
required in a straightforward Monte Carlo simulation method.
An importance sampling technique is introduced here to effi-
ciently provide an accurate numerical solution that can be used
to check the accuracy of the proposed asymptotic method.
Comparisons with the straightforward Monte Carlo simulation
method are also given to illustrate the advantage of using the
importance sampling method.

First, the integral (1) is rewritten in the form

I= f h(®)p(8) w(8) do = J’ K(0)w(8) d6 (13)
e W(0) e

where w(0) = importance sampling density chosen to reduce
statistical error of estimate for I. Using simulation on (13), /
is estimated by the sample mean of k = hAp/w

M
- 1
I=T== ) (8% (14)
W
where M = number of simulations and each sample 0% is
drawn from importance sampling distribution w(0). The vari-
ance of the estimate I is given by

M
LS %) — iy as)

varlll =i — 1) &

The variance var[l] or the coefficient of variation cov[l] =
V var[I]/I of the estimate [ is used to assess the standard error
in simulation results, thus providing guidance for terminating
the simulation process once the error is below a specified
threshold. The choice of w(0) is a critical factor in obtaining
an accurate estimate with fewer simulations than those re-
quired in a straightforward Monte Carlo simulation of the orig-
inal integral (1). The idea is to generate most of the samples
in the region that contributes significantly to the integral / so
that the importance sampling simulations will converge rapidly
to the value of the integral.

Since the main contribution to the integral comes from the
domain in the neighborhood of the point 0* used in the
asymptotic method, it is reasonable to choose w(0) to have
the most probable value equal to 8*. Also, it can be shown
that choosing w(0) to have the same tail behavior as p(8) guar-
antees that the variance of k = hp/w is finite if h(0) has a finite
variance under p(8). Thus, it seems reasonable to assume that
w(8) has a distribution of the same type as p(@). Specifically,
for a Gaussian p(0), w(0) is also chosen to be Gaussian with
a most probable value 0* and with a covariance matrix the
same as that of p(8). For other distributions for p(8), there are
several ways of applying the importance sampling technique
that will guarantee a finite sample variance. One way is to
map the original set of variables 0 into a new set of indepen-
dent Gaussian variables and apply importance sampling to the
transformed integral, as just described. Another way, which
was used in the present study, is to appropriately choose w(0)
in the original parameter space. Such a choice will depend on
the distribution p(0). In the applications that follow, the com-
ponents of @ are assumed to be independently distributed with
the ith component 6, having a lognormal distribution; that is,
p®) = 2m) 5,0, exp[—1/2(In 8, — y,)/c’}]. In this case,
w(0,) is also chosen to be lognormal with a most probable
value 6, the ith component of 8* given by (4), and with o,,
= 0, so that w(8;) and p(0,) have the same decay rate for large
values of 0,.

UNCERTAIN DYNAMIC SYSTEMS

The integral (1) arises in the analysis of moments and re-
liability of uncertain dynamic systems subjected to uncertain
excitations. The present work deals with two sources of un-
certainties. The first is time-invariant system uncertainties that
can be modeled as uncertain-valued parameters. Examples in-
clude uncertainties in stiffness, mass, and damping matrices of
structural models, as well as member capacities, yield
strengths, and so forth. The vector 8 in (1) then consists of
these uncertain parameters, while the joint probability density
function p(0) in (1) indicates the relative plausibilities of the
possible values of these uncertain parameters in the set ®. This
probability distribution is always conditional on the informa-
tion used, although this is not explicitly indicated in the no-
tation. If relevant data are available, an updated version of p(8)
can be derived using Bayes’ theorem (Box and Tiao 1973).
For a large amount of data, an asymptotic approximation of
the integral (1) can be made, which relies on the fact that p(0)
is then sharply peaked around certain points in the parameter
set ® (Beck 1989; Beck and Katafygiotis 1991). The asymp-
totic approximation introduced here can be applied even for
small amounts of data, or when p(8) is chosen subjectively
based on engineering experience and other considerations. Of
course, the new asymptotic approximation of the integral may
not be as accurate in these latter cases as when an updated
p(0) is used based on large samples of data.

The second source of uncertainties is the loading time his-
tories that can be modeled as stochastic processes. The func-
tion h(0) in (1) then represents conditional quantities such as
conditional moments or conditional failure probabilities for a
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given value of 0. Thus, based on the total probability theorem,
the integral / represents the total moment or failure probability
that accounts for the uncertainties in the system parameters 9,
as well as the uncertainties in the loads. Next, methods for
approximately computing the probability of failure and the re-
sponse moments of structures are presented based on approx-
imating the integral (1).

Failure Probability or Reliability

Let F(0) denote the conditional probability of failure of a
structure for a given value of 8. Then the overall failure prob-
ability considering the uncertainties in the structural parame-
ters @ is given in the integral form

Pr= j F(8)p(6) do (16)
e

Equivalently, the overall reliability P, = 1 — P, can also be
written in the integral form

Pg =f R(O)p(6) 40 an
e

where R(0) = 1 — F(8) = conditional reliability for a given
value of 0; i.e., the conditional probability that the structure
will not fail for a given 0. Integrals (16) and (17) are special
cases of integral (1) corresponding to the choices of k(@) =
F(0) and h(8) = R(0@), respectively. Therefore, the approxi-
mation developed previously directly applies to the computa-
tion of the reliability or failure probability of a structure given
the conditional reliabilities or failure probabilities. In the pres-
ent work, it is assumed that such conditional quantities are
available. For example, approximate solutions to the first-pas-
sage problem for dynamic systems subjected to stochastic ex-
citations can be used to provide the conditional failure prob-
abilities or conditional reliabilities.

Note that there are many ways of approximating the prob-
ability of failure Pr. One way is to directly use the asymptotic
approximation (8) with A(0) replaced by F(0). Another way is
to first approximate Py using the asymptotic approximation (8)
with h(0) replaced by R(0) and then compute Py from P =1
— Pg. In fact, there is an infinite number of ways that the
integral (1) can be reformulated to obtain approximations of
the failure probabilities. Only the accuracy of the asymptotic
approximations based on (16) and (17) was examined. It was
found that (16) always led to a more accurate estimate of the
probability of failure than (17) did, so only the results of the
former are presented. The problem with using (17) is that even
a very small error in P can produce a large relative error in
the estimate of Pr because the latter is so small in most prob-
lems of interest.

An alternative but less simple way of approximating P is
to transform the integral (16) to a type of reliability integral
over an ‘“‘unsafe’’ domain determined by an artificial ‘“‘limit
state’’ function, and then apply an asymptotic approximation
available for this type of integral. This procedure has been
carried out by Cherng and Wen (1994) and is outlined in Ap-
pendix I. In addition, it is shown in Appendix I that the results
available from such an analysis can be greatly simplified,
yielding the result obtained by the present asymptotic approx-
imation for Pr. The present procedure, however, is simpler and
more direct. In addition, the somewhat arbitrary choice of
py(y) used in the method of Appendix I is justified by the
present procedure as the one that gives a correct asymptotic
expansion to approximate the value of Pr.
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Response Moments

Denote by z the state response vector of a structure. It is
often desirable to compute the mth moment E[n(z)] of the
response, where n(z) = (z)" * - @), L + +++ + Ly =m, and
operator E denotes mathematical expectation. The computation
can be based on the conditional mth moment E[v(z)|8], which
depends on the conditional probability density p(z|0) of the
response given the system parameters. The response z could
be uncertain because of the uncertain excitation, or because 0
gives only the structural model response that will be different
from the actual structural response because of modeling errors
(e.g., if @ specifies a linear model while the actual structure
behaves nonlinearly). The latter problem has been studied by
Katafygiotis and Beck (1995) for deterministic excitation.

Using the total probability theorem, the unconditional mo-
ment E[n(z)] is obtained in the form

E[n@)] = f E[n(z)|0]p(0) 40 (18)
e

which is a special case of the general integral (1) with A(0) =
E[n(z)|0]. Again, available results from random vibration the-
ory can be used to provide solutions for the conditional mo-
ments E[(z)|0]. Exact solutions for E[1)(z)|0] exist for sev-
eral cases of interest, such as linear systems subjected to
external loads modeled by Gaussian, as well as some non-
Gaussian, stochastic processes. For nonlinear systems, exact
solutions only exist for limited cases. However, available ap-
proximations for E [n(z)lﬂ] developed over the past few dec-
ades can be used with the present analysis to compute E[1(z)}
[e.g., see Soong and Grigoriu (1993); Lin (1967)].

The previous concept can be generalized to compute the
expectation of any response quantity of interest from the con-
ditional expectation of the same quantity given 0. Examples
for E[n(z)] that can be treated include, but are not limited to,
the expected stresses, expected total energy, and the expected
rate of level exceedance that is useful in simplified structural
reliability studies [e.g., Kaspari et al. (1995)].

Sensitivity Analysis

Sensitivity analysis has been mostly used in reliability to
identify which uncertainties of the system parameters can sig-
nificantly influence the failure probability. This concept can
also apply to moments or other quantities. The effect of a
parameter 8 on the integral I can be expressed in terms of a
sensitivity function S(3), given by

fractional change in value of / S JIB)

= =———— (19
5@ fractional change in system parameter I(8) 93 s

which is a measure of the sensitivity of the value of the in-
tegral [ to a parameter variation, such as a mean or variance
involved in the probability density function p(®). Using (2),
S(3) can be obtained by

d 9l(0, 3)

S®=1® )y

expl[/(0, 5)] do (20)

Applying Laplace’s asymptotic approximation (Bleistein
and Handelsman 1986) for the integral in (20), S(8) is ap-
proximated by

al(0*, 3)
ad

where 8* maximizes /(8, 8). The sensitivity of the failure prob-
ability to a parameter 8 is a special case of (21) in which
(8, d) is given by (3) with h(0) = F(0).

For the purpose of illustration, assume that the variable 6;

S@®) =~ 8 @n




is Gaussian and independent of all other variables in 0; then
it is straightforward to show that the sensitivities to the mean
jre, and the standard deviation o, of 6, are given by

0F — e, Ko,
S(pe) = ———— = (22)
Ty, g,
and
0F — Mo 2
S(oe) = —1 + (—) 23)
U'el

respectively. In particular, as (23) indicates, a measure of sen-
sitivity S(o,) is directly related to the ratio of the distance of
the point 8* from the mean p,, to the standard deviation g,
A similar simple interpretation can be given for S(j,). The
location of 6 depends on the function A(0) used in (1).

APPLICATIONS

The accuracy of the asymptotic expansion is investigated by
computing the failure probabilities of a single degree of free-
dom (DOF) linear system shown in Fig. 1(a), and the failure
probabilities and second-order response moments of a two
DOF linear primary-secondary system shown in Fig. 1(b),
when both are subjected to a stationary Gaussian white-noise
base excitation with spectral density S. Any response quantity
r(t, 0), which is linearly dependent on the components of the
state vector describing the response of either of these linear
systems, is a Gaussian process since the input is Gaussian.
Failure is assumed to occur when the response r(z, 8) reaches
some critical level b for the first time. The probability that the
stationary portion of duration T of the response r(z, @) has
never reached the value & for the given 0 can be obtained
using available results from random vibration theory. These
results are based on the expected rate of upcrossing and down-
crossing through levels b and —b, respectively. For a high
threshold level b, it can be assumed that the events of crossing
such a level are independent, in which case the conditional
failure probability F(0) is approximated by

F(0) = 1 — exp[—2v(0)T] (24)

where for zero-mean Gaussian processes, the expected rate
v(0) of upcrossing through level b for a given @ is (Soong and
Grigoriu 1993)

VO = i@ 5P < 2af(e)> 25
where o,(0), 0,(0) = conditional second moments of response
r(t, 8) and its time derivative for a given 0. It is worth men-
tioning that one can develop analytical expressions for the gra-
dient and the Hessian needed in the proposed asymptotic
expansion for evaluating response moments and failure prob-
ability.

Uncertain Single Degree-of-Freedom System

Choosing the response r(t, 8) to be the displacement of the
mass of the single DOF system with circular frequency w and
damping ratio { [Fig. 1(a)], (25) simplifies further to

2 3
»O) = % exp (._b_ 2fw )

2 ws (26)

The uncertainties in the natural frequency w, damping ratio {,
and excitation spectral density S are described by lognormal
distributions with most probable values given by p, = {f..
e Bs} = {2m, 0.05, 1.0}. The threshold level b is chosen to
be a multiple of the standard deviation o,(m,) of the response

m,

k, 1_c¢
E o m'=dm_.' L 2 Jmk,

m 0= m,
’k
= o [P
kEE ic ¢ ko% f"v o m,’
(a) (b)

Systems: (a) Single DOF; (b) Two DOF Primary-Sec-
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FIG. 1.
ondary

r(¢, ) computed at the most probable values P, of the system
parameters, i.e., b = d\/fo’,(u.,) = d\/mus/(u ), where d
denotes a normalized measure of the threshold level. The du-
ration T of the response is chosen to be T = 10 2w/p,), a
multiple of the most probable period of the oscillator. These
choices mean that the results for the failure probability P, are
independent of the most probable value assumed for the un-
certain system parameters.

At first, the uncertainty in each of the parameters is consid-
ered separately in turn while holding the other parameters
fixed at their most probable values. The level of uncertainty
for a variable 0 is measured by the ratio o4/, Where o, de-
notes the standard deviation of 8. Figs. 2(a), 2(b), and 2(c)
show the failure probabilities as a function of the ratio oy/p,
for the three cases of uncertain w, uncertain {, and uncertain
S, respectively. On the other hand, Fig. 2(d) shows the failure
probabilities as a function of the ratio o /p., for the case where
all three parameters w, {, and § are uncertain. In this case, the
standard deviations of the parameters { and § are fixed at o,
= 0.3u, and o5 = 0.2p5, respectively. All results in Fig. 2
correspond to a normalized threshold level d = 3. Table 1 gives
the failure probabilities as a function of the normalized thresh-
old level d for the particular case of Fig. 2(d) with o /u, =
0.2. For the purpose of comparison, the results obtained from
the second-order perturbation method, numerical integration
(NI), importance sampling (IS), and straightforward Monte
Carlo (MC) simulation are also included in Fig. 2 and Table
1. Only 100 samples are used in Fig. 2 for both the importance
sampling technique and the straightforward Monte Carlo sim-
ulation.

The following observations can be made regarding the ac-
curacy of the methods. The second-order perturbation method
performs well only for the case of one uncertain parameter
and small levels of uncertainty. For the case of three uncertain
parameters shown in Fig. 2(d), the perturbation method per-
forms poorly even for small levels of uncertainties. In all
cases, the asymptotic method performs acceptably well even
if the level of uncertainties is relatively large. From Table 1,
the accuracy of the perturbation results deteriorates signifi-
cantly as the threshold level increases. For d = 4.0, for ex-
ample, it underestimates the failure probability by three to four
orders of magnitude. Such deterioration is not observed for the
asymptotic method.

Fig. 3 shows the location of 8* relative to m, for the case
of Fig. 2(d). Note that 8* has moved further away from the
most probable value p, toward the tails of the distributions
assumed for the uncertain variables. It is therefore expected
that the importance sampling technique will converge faster
than the straightforward Monte Carlo simulations. This is ev-
ident in Fig. 2, where the results obtained from the two sim-
ulation methods using 100 samples are plotted. The failure
probability estimate P predicted by the two simulation meth-
ods as a function of the number of samples is also compared
to the failure probability obtained from numerical integration
in Fig. 4 for the case of Fig. 2(d) with o /u, = 0.2 and for
two threshold levels, d = 3 in Fig. 4(a) and d = 4 in Fig. 4(b).
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t,and S

Again, the importance sampling method converges much faster
than the Monte Carlo simulation.

Comparing the failure probabilities to the conditional failure
F(p,) in Table 1 and Fig. 2, it is clear that uncertainties are
very important, since they can change the failure probabilities
by orders of magnitude. Also, comparing the values of the
failure probabilities in Figs. 2(a), 2(b), and 2(c), one can con-
clude that the uncertainty in the frequency is much more im-
portant than the uncertainties in the damping and input power
spectral density.
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TABLE 1.

Levels: One DOF System; Uncertain », {, and $

Failure Probabilities (< 107*) for Different Threshold

Threshold level X

V20,(1,) 3.0 a5 4.0
(1) (2) (3) (4)
Conditional [F(jy)] 26.65 0.96 0.023
Asymptotic 519.0 204 .4 80.61
Perturbation 62.04 1.9 0.028
Importance sampling
(Monte Carlo) 10°
samples 527.2 (742.2) | 206.6 (361.1) | 86.53 (69.02)

Importance sampling
(Monte Carlo) 10°
samples

Importance sampling
(Monte Carlo) 10*
samples

Numerical integration

543.8 (621.9) | 215.6 (258.9) | 87.98 (75.00)

552.8 (578.7)
555.5

216.7 (227.7)
217.8

86.01 (88.52)
85.53
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FiG. 3. Location of Maximum 6* of integrand for P-for Case of
Fig. 2(d)
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FIG. 4. Failure Probabllity Estimate P-for Single DOF System
with Uncertainw, {,and S: (a)d=3;(b)d=4

Uncertain Two Degree-of-Freedom
Primary-Secondary System

The primary-secondary system is chosen because of the
richness in its dynamic characteristics and the significant ef-
fects that uncertainties in the system parameters can have in
its response and reliability (Igusa and Der Kiureghian 1988;
Soong and Chen 1989). The mass ratio € = m,/m, and the
frequency ratio & = w,/w, are important variables controlling




the dynamics of the two DOF system shown schematically in
Fig. 1(b). For illustrative purposes, the masses are assumed to
be deterministic and the mass ratio is taken to be € = 0.01 so
that the system is representative of a two DOF primary-sec-
ondary structure. The uncertain parameters are chosen to be
the natural frequencies w, and w, and the damping ratios {,
and {, of the two oscillators. All uncertainties are modeled by
lognormal variables that are assumed to be independent. The
following most probable values are chosen for the system pa-
rameters: p;, = 5%, p;, = 2%, o, = 1, and w,, = L TTI The
ratios of the standard deviations to the most probable values
are chosen to be 0.1 for the frequencies and 0.25 for the damp-
ing ratios.

The response quantity of interest is the restoring force per
unit secondary mass, r(t, 8) = w?[x,(f) — x,(9)], of the spring
connecting the secondary mass m, to the primary mass m,.
Since r(¢, 0) is a Gaussian stochastic process for a given 0,
(24) and (25) can again be applied to compute the conditional
probability of a stationary portion of the stochastic process
r(t, 0) exceeding the level b for the first time. The quantities
0?(8) and ¢*(0) involved in (25) are the second-order moments
of the response r(f, 8) and its time derivative, which can be
obtained by solving the Lyapunov equation of the system for
the covariance matrix of the response (Soong and Grigoriu
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FIG. 5. Conditional Failure Probability F(j.,) for Two DOF Sys-
tem (d = 3)
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FIG. 6. Normalized Failure Probability P./F(p,) for Two DOF
Primary-Secondary System: (a) Case A: Uncertain », and w,;
(b) Case B: Uncertain w,, {,, w,, and {,

1993). For this particular case, analytical solutions involving
the system parameters @ can be written for the two moments.

The following three cases, namely, A, B, and C, will be
considered. Case A corresponds to uncertainties in the fre-
quency ratios w, and w,; case B corresponds to uncertainties
in the frequencies and damping ratios w,, w,, {, and {;; and
case C corresponds to uncertainties in b, S, and 7, as well as
in w,, w,, {,, and {,. For case C, the uncertainties in b, S, and
T are modeled by independent lognormal variables with most
probable values ., = 20 (pg), s = 1 and pr = 10 21/
M.,). The standard deviations are chosen as o, = 0.1, 05 =
0.2u;s, and o7 = 0.2y

The conditional probability of failure F(j,) for the most
probable values p, of the system parameters is plotted in Fig.
5 for values of the frequency ratio a = w,, /., ranging from
0.5 to 2.0. Figs. 6(a) and 6(b) show the failure probabilities,
normalized by the conditional failure probability F(j,), for
cases A and B, respectively. The results obtained from the
asymptotic expansion are compared to those obtained from the
perturbation method and the importance sampling technique
computed for 10,000 samples. Since the accuracy of the
asymptotic method for very small failure probabilities is not
directly evident from Fig. 6, the failure probabilities are re-
plotted in Fig. 7 using a logarithmic scale.

The asymptotic method performs very well in terms of pre-
dicting both the quantitative and qualitative features of the
failure probabilities as a function of the frequency ratio .,/
M., In contrast, the perturbation method not only gives large
errors, but also is unable to predict the qualitative features of
the behavior of the failure probabilities. In particular, at the
frequency ratio ., /p,, = 1.0, it gives unrealistic negative val-
ues for the failure probability. The failure probabilities corre-
sponding to case C are listed in Table 2 for three values of
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FIG. 7. Normalized Fallure Probability P-/F(p,) for Two DOF
Primary-Secondary System for Cases A and B

TABLE 2. Failure Probabilities (x10~*) for Different Threshold
Levels; Two DOF System, Seven Uncertain Parameters, }L.,,_/p.,_,’
=13

Threshold level X

V20 (1) 3.0 35 4.0
(1) 2 (3) 4
Conditional [F(p,)] 28.52 1.108 0.026
Asymptotic 1,462 953.8 606.2
Perturbation 861.3 59.08 2.235
Importance samplin,
(Monte Carlo) 1
samples 2,015 (1,627) | 1,268 (1,067) | 776.2 (656.4)
Importance sampling
(Monte Carlo) 10°
samples 1,977 (1,734) | 1,247 (1,087) | 756.8 (647.4)

Importance sampling
(Monte Carlo) 10*
samples

1,875 (1,852)

1,178 (1,157)

712.7 (698.1)
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the most probable threshold levels p,, and for the frequency
ratio p, /M., = 1.3. The asymptotic expansion gives good re-
sults, while the perturbation method provides very poor results
with errors of several orders of magnitude.

The location of the maximum 0* of the integrand for the
probability of failure is shown in Fig. 8 as a function of the
frequency ratio. The fact that 8* has moved further away from
the most probable values p, suggests that the importance sam-
pling method can be advantageously used to accelerate the
convergence of the simulation method. The failure probability
estimate predicted by the two simulation methods as a function
of the number of samples is shown in Fig. 9(a) for case B
with d = 3, and in Fig. 9(b) for case C with d = 4. The co-
efficient of variation cov[P;] corresponding to the estimate Py
in Figs. 9(a) and 9(b) is also computed, and the results are
presented in Figs. 10(a) and 10(b), respectively. Again, the
much faster convergence of the importance sampling method
compared to the Monte Carlo simulation is evident in Figs. 9
and 10 in both cases.

Fig. 11 shows the conditional stationary second moment
oX(pe) = E[r*|p] of the secondary system spring force
r(t, m,), normalized by the conditional stationary moment
computed at p, /i, = 1.0. The large amplification of the
spring force variance at w,/p.,, close to unity suggests that
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uncertainties in the structural parameters will be important in
this region. The stationary second-moment E [r*], normalized
by the conditional variance o7(j,) = E[r*|p,], is plotted in
Figs. 12(a) and 12(b) for cases A and B, respectively. For
comparison, results obtained from the second-order perturba-
tion method and the importance sampling method using 1,000
samples for case A and 10,000 samples for case B are also
included in these figures. Results from the more accurate nu-
merical integration method are computed and shown only for
case A in Fig. 12(a).

The second-order perturbation method gives poor results for
the variance of the secondary-system spring force under con-
ditions close to tuning, even if the level of uncertainties is
relatively small. An example is case A presented in Fig. 12(a),
which corresponds to relatively small levels of uncertainties
since 0, /K, = 0.1 and o, /., = 0.1. When p, /p,, = 1, the
perturbation method gives unrealistic negative values for the
variance. The asymptotic expansion gives better and more re-
liable estimates of the variance over the whole range of vari-
ation of the frequency ratio p.,/p.,.

The deviation of the results shown in Figs. 6, 7, and 12
from unity is directly related to the effect of the uncertainties
on the failure probabilities and second-order moments. Values
larger than one imply that the uncertainties are important, and
neglecting them gives unconservative results. On the other
hand, values smaller than one imply that neglecting the un-
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certainties will result in conservative values for the response.
From the large values in Fig. 6, and the similarity of Figs. 6(a)
and 6(b), it can be seen that the failure probabilities are very
sensitive to uncertainties in the frequencies, but are less sen-
sitive to uncertainties in the damping ratios for nearly but not
perfectly tuned conditions. Neglecting the uncertainties in the
frequencies will give highly unconservative results. The un-
certainties in the damping ratios produce significant changes
in the failure probability only when the frequency ratio w,,/
M., is close to 1.0. Under perfectly tuned conditions, the fail-
ure probabilities are lower than that of the deterministic sys-
tem, which means that analyses based on the most probable
system will be conservative. Similar conclusions can be drawn
for the moments of the secondary spring force, since the pat-
tern of the moment variation presented in Fig. 12 is similar to
the pattern shown in Fig. 6 for the variation of the failure
probabilities.

Summarizing, the asymptotic method can be used to draw
reliable qualitative conclusions about the behavior of uncertain
linear dynamic systems for both the failure probabilities and
the response moments, whereas this is not so if the results of
the perturbation method are used. Also, the asymptotic method
provides more reliable quantitative results; in particular, for
failure probabilities, the perturbation method performs very
poorly.

CONCLUSIONS

The primary focus of the present paper is to introduce a
new asymptotic approximation for probability integrals of the
type arising in the study of uncertain dynamic systems, and to
examine the weaknesses and strengths of the asymptotic for-
mulas with simple examples. The approach is used to derive
simple analytical formulas for the probability of failure and
response moments in uncertain dynamic systems, and the re-
sults are compared to some existing approximations.

When the asymptotic approximation is applied to compute
the probability of failure, it is found to give the same result

as a more involved asymptotic approximation, which first
transforms the probability integral to a type of reliability in-
tegral over an unsafe domain determined by an artificial limit
state function and then applies an asymptotic approximation
available for integrals of this type. In the cases examined, the
new method is generally much more accurate than the second-
order perturbation method, which can be completely unrelia-
ble, especially when used to predict failure probabilities. When
deriving ‘‘exact’’ results to check the accuracy of the new
method, it is much more efficient to use an importance sam-
pling method than the Monte Carlo simulation.

The procedure described in this paper is general and can be
used to obtain the reliabilities and moments of multi-DOF lin-
ear and nonlinear systems subjected to nonwhite Gaussian and
non-Gaussian excitation processes. The conditional quantities
required in the present method can be obtained from random
vibration theory available for each specific case.
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APPENDIX 1. SIMPLIFICATIONS OF EXISTING
SORM-BASED RELIABILITY RESULT

The probability of failure given by (16) can also be rewrit-
ten in the form (Cherng and Wen 1994)

Pr= f p,(¥)p(0) dé dy @7
2(8.)<0

where g(0, y) = CDF'[1 — F(0)] — y = a limit state function;
y = a new nonnegative variable with probability density func-
tion p(y); and CDF denotes the cumulative density function
of y. Choosing p(y) = e, the limit state function can be
written in the form

g(x) = —In{F(xy, ..., x)] — Xu (28)

where x” = [07, y]. This function is then approximated by a
second-order surface at the point where failure is most likely
to occur (Breitung 1989). This point x* is obtained by maxi-
mizing the log-likelihood function

’ xn) — Xp+1 (29)

subject to the constraint g(x) = 0. Using (28), the determina-
tion of x* reduces to solving the unconditional optimization
problem for

f(x) =In p(x, - - -

l(xl’ T, xn) = lnp(xly IR -xn) + ll’l F(xh T, xn) (30)

Using the asymptotic approximation of Breitung (1989) for
integrals of the form (27), an approximation for the probability
of failure is obtained

1
P ~ @2m)™? ~BY) —/——
F ~ (27)" exp(—B3) o) €}
where
Bo =V —I(x*) (32)
J(x*) = [Vi(x*)]"C(x*)Vi(x*) (33)

in which VI(x*) = gradient vector of {(x) evaluated at x = x*;

JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1997 / 1227




(i, j) element of matrix C(x) = (i, j) cofactor of a matrix fl(x);
and the (i, j) element of H(x) is

FPlx*)  |Vix*)| dgx*)
oxdx,  |Veg(x*)| axox ’

Hy(x*) = Lj=1,-,n+1

(34

This result for the probability of failure has been reported by
Cherng and Wen (1994) for the case of independent x,, - - -,
Xn i.€., using In p(xy, *++, X)) =In p, () + - -+ + In p, (x)
in (30).

One can proceed further, however, to simplify considerably
the result given before. Note that at the point x* corresponding
to the maximum of I(x;, - - -, x,) given by (30) the following
equations are satisfied:

1 ap(x*) 1 aF(x*)
px*) dx,  F&x*) ax
Also note that x* = 0¥, i=1, - - -, n, where 6} corresponds

to the maximum of the function (3). The quantities Vf(x) and
Vg(x) take the form

’ i=1"”1n (35)

T = | X 1 op)
[VI(X)] - [p(x) axl ’ 9p(x) ax” L] 1] (36)

r_|LF® 1 Fx)
A [F(x) . F® ox, 1] @D

Evaluating (36) and (37) at the point x* and making use of
(35) gives

|Vix)| = |Vex*)] 38)
which can be used to simplify (34) to
lx*)  a%g(x*)
ﬂ' *=__-——__—7 .’.=9."y +1
) = o omay 7! " 39)
Using (28) and (29), it is straightforward to show that
Aoy = Hpoy®) =0, i=1,"-+,n+1  (40)

This implies that all but the (n + 1, n + 1) elements of C(x)
are equal to zero. The nonzero element is Cgipynsn(X) =
det[H(x*)], where H(x*) is an n X » matrix with elements

lx*)  dg(x*)  3U(x*)
oxdx,  oxdx,  oxdx

Substituting (36) and (37) into (33), and considering the
simplified form of C(x), yields

J(x*) = det[H(x*)] 42)

which is the same as the det[L(0*)] appearing in (8), where
L(8*) is given by (6). Finally, noting that exp(—P2) =
expl/(x*)] = exp[l(8*)] = F(0*) p(8*), approximation (31) is
the same as (8) derived in this paper where an asymptotic
approximation is applied on the original failure probability in-
tegral (16).

Hyx*) = Lj=1,-"",n (@)
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APPENDIX Ill. NOTATION

The following symbols are used in this paper:

b = threshold level;
C = cofactors of H;
cov = coefficient of variation of random variable;
d = normalized threshold level;
E = expected value;
F = conditional failure probability;
g = limit state function;
H, A, L, T = Hessian matrices;
Hy, Ay, Ly, T; = (i, j) component of Hessian matrices;
h = function in (1);
I = value of integral;
J = function defined in (33);
! = function defined in (3);
I = log-likelihood function;
P, = overall failure probability;
B, = overall failure probability estimate;
P = overall reliability;
p = probability density function;




p(y)
R

A
O T T I (O ([ £ O O Y O I 1

density function of y;
conditional reliability;
n-dimensional real vector space;
system response;

system response derivative;
excitation spectral density;
sensitivity function;

period of oscillations;

(i, j) element of covariance of 0;
variance of random variable;
importance sampling density;
random vector;

random variable;

state response vector,

parameter defined in (32);
system parameter;

partial derivative;

damping ratio;

m = mth moment of z;

® = subregion of R";

0 = uncertain parameters;

6 = mean value of 0;

0, = ith component of 6;
0* = maximum point of A(0) p(0);

K = hplw,

N\; = ith eigenvalue of L;

iy = mean value of random variable y;

v = expected rate of up-crossing a level;
o, = standard deviation of random variable y;
w = natural frequency; and

V = gradient symbol.

Subscripts
p = primary system; and
s = secondary system.
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