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Abstract: System identification of structures using their measured earthquake response can play a key role
in structural health monitoring, structural control and improving performance-based design. Implementation
using data from strong seismic shaking is complicated by the nonlinear hysteretic response of structures.
Furthermore, this inverse problem is ill-conditioned; for example, even if some components in the structure
show substantial yielding, others will exhibit nearly elastic response, producing no information about their
yielding behavior. Classical least-squares or maximum likelihood estimation will not work with a realistic
class of hysteretic models because it will be unidentifiable based on the data. It is shown here that Bayesian
updating and model class selection provide a powerful and rigorous approach to tackle this problem when
implemented using a recently developed stochastic simulation algorithm called Transitional Markov Chain
Monte Carlo. The updating and model class selection is performed on a previously-developed class of Masing
hysteretic structural models that are relatively simple yet can give realistic responses to seismic loading.
The theory for the Masing hysteretic models, and the theory used to perform the updating and model class
selection, are presented and discussed. An illustrative example is given that uses simulated dynamic response
data and shows the ability of the algorithm to identify hysteretic systems even when the class of models is
unidentifiable based on the data.

Key words: Bayesian methods, Masing hysteretic models, system identification, Markov Chain Monte Carlo simu-
lation, model class selection

1. INTRODUCTION

Current methods for developing finite-element models can produce structural responses that
are consistent qualitatively with behavior observed during strong earthquake shaking, but
there has long been an interest in using system identification methods for quantitative as-
sessment of structural models using recorded seismic response (see Beck, 1978 for early
work and Beck, 1996 for a review). The objective may be to improve the predictive capabili-
ties of structural models for dynamic design or for the design of structural control systems, or
to implement structural health monitoring. System identification based on updating of finite-
element models using measured seismic response is challenging, however, because the large
number of uncertain parameters associated with these models makes the inverse problem
extremely ill-conditioned.
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Simplified models can be used in the identification procedure but the selection of an
appropriate class of models to employ is complicated by the nonlinear response of structures
under strong seismic loading; in particular, the structural restoring forces are hysteretic, de-
pending on the previous time history of the structural response rather than on an instanta-
neous finite-dimensional state. Although some research into the identification of hysteretic
systems has been carried out (Jayakumar, 1987; Jayakumar and Beck, 1988; Cifuentes and
Iwan, 1989; Benedettini et al., 1995, Ashrafi and Smyth, 2005), this previous work did not
quantify the modeling uncertainties and did not properly deal with the ill-conditioning in-
herent in this inverse problem. However, the uncertainty associated with structural model
predictions can have a significant impact on the decision-making process in structural de-
sign, control and health monitoring. Furthermore, classical estimation techniques such as
least-squares and maximum likelihood do not usually work properly when applied to hys-
teretic model classes because they are nearly always unidentifiable based on the available
data.

The Bayesian updating approach treats the probability of all models within a set of can-
didate models for a system, and consequently has the advantage of being able to quantify all
of the uncertainties associated with modeling of a system and to handle ill-conditioned iden-
tification problems. Note that the probability of a model will not make sense if one interprets
probability as a long-run frequency of an event, but it does when probability is interpreted as
a multi-valued logic that expresses the degree of plausibility of a proposition conditioned on
the given information (an interpretation given a rigorous foundation by Cox, 1961; see also
Jaynes, 2003). Although Bayesian methods are widely used in many fields, their application
to identification of dynamic hysteretic models seems to be very limited.

Beck (1989) and Beck and Katafygiotis (1991, 1998) presented a Bayesian statistical
framework for model updating and predictions for linear or nonlinear dynamic systems that
explicitly treats prediction-error and model uncertainties. This earlier work utilized Laplace’s
method for asymptotic approximation to evaluate the Bayesian predictive integrals. An intro-
duction to this theory is given in Papadimitriou and Katafygiotis (2005). A basic concept is
that any set of possible deterministic dynamic models for a system can be embedded in a set
of predictive probability models for the system by specifying a probability distribution (usu-
ally Gaussian) for the uncertain prediction error, which is the difference between the actual
system output and the deterministic model output. Each predictive probability model is as-
sumed to be uniquely specified by assigning a value to a model parameter vector. Therefore,
a probability distribution over the set of possible predictive models that specifies the plausi-
bility of each such model is equivalent to a probability distribution over a corresponding set
of possible values for the model parameter vector. When dynamic data is available from the
system, a chosen initial (prior) probability distribution over the parameters can be updated
using Bayes’” Theorem to give a posterior probability distribution.

It is useful to characterize the topology of this posterior as a function of the model pa-
rameter vector by whether it has a global maximum at a single most probable parameter
value, at a finite number of them, or at a continuum of most probable parameter values ly-
ing on some manifold in the parameter vector space. These three cases may be described as
globally identifiable, locally identifiable, and unidentifiable model classes based on given
dynamic data from the system. The Laplace asymptotic approximation is most useful when
there is a large amount of data and the model class is globally identifiable, although it can
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be applied in the locally identifiable case (Beck and Katafygiotis, 1991, 1998) and even
unidentifiable cases when the manifold of most probable values of the parameter vector is
of very low dimension (Papadimitriou et al., 2001; Katafygiotis and Lam, 2002). However,
it requires a non-convex high-dimensional optimization to find the most probable parameter
vectors, which can be computationally challenging. To avoid these difficult optimizations
and to more readily treat cases where the model class is not globally identifiable (which
will occur in finite-element model updating because of the large number of uncertain para-
meters that occur in realistic structural models), in recent years attention has been focused
on stochastic simulation methods for Bayesian updating and prediction, especially Markov
Chain Monte Carlo methods, such as the Metropolis—Hastings, Gibbs Sampler and Hybrid
Monte Carlo algorithms. The emergence of these stochastic simulation methods has led to
a renaissance in Bayesian methods across all disciplines in science and engineering because
the high-dimensional integrations that are involved can now be readily evaluated.

The goal of the stochastic simulation methods is to generate samples which are distrib-
uted according to the posterior probability density function (PDF). The posterior PDF gives
the plausibility of each of the candidate models in the model class (specified by a correspond-
ing vector of model parameters), based on the data. While a variety of stochastic simulation
methods are available, many of them are not useful for Bayesian updating. In this work, we
focus specifically on Markov Chain Monte Carlo (MCMC) methods (see Neal, 1993; Gilks
et al., 1996; MacKay, 2003; or Robert and Casella, 2004 for more comprehensive overviews
of this topic). One advantage of these methods is that non-normalized PDFs can be sampled,
so that samples may be drawn from the posterior PDF without evaluating the normalizing
constant in Bayes’ Theorem (called the evidence or marginal likelihood), which can be a
difficult procedure because it usually requires evaluating a high-dimensional integral over
the parameter space. A remaining challenge associated with model updating by stochastic
simulation is the fact that, unless the data is very sparse, the posterior PDF occupies a much
smaller volume in the parameter space than the prior PDF over the parameters. This fact
makes it difficult to draw samples from the posterior PDF.

One commonly-implemented MCMC method is the Gibbs sampler (Geman and Geman,
1984). When applicable, the Gibbs sampler is a powerful method for generating samples
from high-dimensional posterior PDFs; for example, Ching et al. (2006) apply it to the prob-
lem of using modal data to update a stochastic linear structural model that has 312 para-
meters. However, the Gibbs sampler is only readily applied to model classes that produce
posterior PDFs that have a special structure to them; and for this reason, it is difficult to
apply to the updating of hysteretic models.

Another commonly-implemented MCMC method is the Metropolis—Hastings (M-H) al-
gorithm (Metropolis et al., 1953; Hastings, 1970), which can be used to create samples
from a Markov Chain whose stationary distribution is any specified target PDF, even a non-
normalized one. Although in theory the M-H algorithm can generate samples from any pos-
terior PDF, for higher-dimensional parameter spaces it may still be very difficult to draw
samples that cover all the regions of high-probability content. For this reason, Beck and Au
(2000, 2002) proposed gradual updating of the model by using the M-H algorithm to sample
from a sequence of target PDFs, where each target PDF is the posterior PDF based on an
increasing fraction of the available data. In this manner, the target PDF gradually converges
from the broad prior PDF to the final concentrated posterior PDF. The samples from each
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intermediate PDF are used to form a kernel density, which is used as a global proposal PDF
in the M-H algorithm for the next “level” of sampling.

Ching and Chen (2007) modified this approach to develop what they call the Transi-
tional Markov Chain Monte Carlo (TMCMC) method. This technique also uses a sequence
of intermediate PDFs. However, rather than applying updating with part of the available data,
the entire data set is used but its full effect is diluted by taking the target PDF for the mth
level of the sampler to be proportional to p (D|0, M)?» p (6| M), where 0 < f8,, < 1; here,
So = 0 gives the initial target distribution proportional to the prior PDF and f,, = 1 for the
final level of the sampler gives a target distribution proportional to the posterior PDF. Due
to the conceptual similarities between this approach and the simulated annealing approach
(Fishman, 1996; Neal, 1993), f,, will be referred to as the tempering parameter. In TMCMC,
re-sampling is used between levels to improve the rate of convergence.

Another difference between the TMCMC algorithm and the approach of Beck and Au
(2002) is in the application of the Metropolis—Hastings algorithm. Rather than using a global
proposal PDF based on a kernel density constructed from the samples from the previous
level, a local proposal PDF is used in what is essentially a local random walk in the parameter
space.

This work focuses on the application of the TMCMC algorithm to Bayesian updating of
the model parameters and to Bayesian model class selection between competing sub-classes
of models, for a class of Masing hysteretic models that are believed to be well-suited to
realistic modeling of the seismic behavior of structures. These models are described in the
next section.

2. MASING HYSTERETIC MODELS

One fundamental approach to constructing hysteretic force—deformation relations for struc-
tural members and assemblages of members is to build them up from constitutive equations
(“plasticity models”) which govern material behavior at a point. However, factors such as
complex stress distributions, material inhomogeneities and the large number of structural el-
ements make this approach impractical. Also, there is no general consensus on the choice of
models for cyclic plasticity under arbitrary loading.

An alternative approach is to develop simplified models that capture the essential fea-
tures of the hysteretic force-deformation relationship but then, lacking a fundamental theo-
retical basis, these models should be validated against the observed behavior of structures.
This has been done by Jayakumar (1987) for the well-known Bouc—Wen model (Wen, 1976),
which is in essence a planar version of the early endochronic model (Valanis, 1971); these
models are mathematically convenient, especially for random vibration studies using equiv-
alent linearization, but when they are subjected to asymmetric cyclic loading, these models
can exhibit an unphysical “drifting” behavior (Jayakumar, 1987). This behavior makes them
unsuitable as a class of identification models for strong seismic response where this type of
irregular loading occurs.

A simplified hysteretic model with a physical basis was presented by Masing (1926),
which is based on the hypothesis that a one-dimensional hysteretic system may be viewed
as a collection of ideal elasto-plastic elements (a linear spring in series with a Coulomb
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Figure 1. Conceptual sketch of the Distributed Element Model (from Chiang, 1992).

damper) with the same elastic stiffness but with a distribution of different yield strengths.
This idea was used in structural dynamics by Iwan to form the Distributed Element Model
(DEM), which consists of a collection of N ideal elasto-plastic elements connected in parallel
(Iwan, 1966, 1967) with a common stiffness k/N for the springs but different yield strengths

ri*/N,i = 1,...N, as shown in Figure 1. The restoring force r for a single-degree of
freedom DEM subjected to a displacement x is given by:
"rx N —n
= — +k 1

where n is the number of elements which have yielded. Infinite collections of elasto-plastic
elements can considered by introducing a yield strength distribution function ¢ (r*), such
that restoring force r (x) during initial loading is:

kx

r(x) = /r*¢5 r*)dr* + kx/¢5 (r*)dr*. 2)
kx

0

Because there is an underlying physical basis for the model, DEMs with a finite number
of elements have been shown to give good representations of the hysteretic behavior of some
structures, and do not exhibit the previously-discussed drifting behavior (Cifuentes, 1983;
Thyagarajan, 1989). However, DEMs with an infinite number of elements are difficult to
implement directly, in contrast to the finite case where the state of each element is tracked.
Fortunately, there are two hysteretic rules that exactly describe the behavior of DEMs without
needing to keep track of the internal behavior of the elements, which we now present.

Masing (1926) postulated that the steady-state behavior of such a hysteretic system sub-
jected to cyclic loading could be described as follows. If the initial or “virgin” loading curve
is described by the implicit relationship:

fx,r)=0 (3)
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Figure 2. Hysteresis loop for transient loading of the extended Masing model (from Jayakumar, 1987).

where x is the deflection and r is the restoring force, then each branch of the hysteresis loop
between the points (x,, r,) and (—x,, —r,) is given by:

f<x—x* r—r*)zO @

2 72

where (x*, r*) is the load reversal point for the branch curve: (x*,r*) = (x,, r,) for the
unloading branch and (x*,r*) = (—x,, —r,) for the loading branch. This is commonly
referred to as Masing’s rule.

Masing’s theory was extended to apply to the case of softening hysteretic systems un-
der arbitrary loading by Jayakumar (1987) by specifying two hysteresis rules, which will
henceforth be referred to as the extended Masing rules:

1. The equation of any hysteretic force-deformation curve can be obtained by applying the
original Masing rule to the virgin loading curve using the latest point of load reversal. For
example, if the virgin loading curve OA in Figure 2 is defined by equation (3) then the
branch curve CD is defined by equation (4), with (x*, r*) = (x¢, r¢).

2. Once an interior curve crosses a curve from a previous load cycle under continued loading
or unloading, a hysteresis loop is completed and the load-deformation curve of the previ-
ous cycle is continued. For example, if the unloading curve DE in Figure 2 is continued
to point C, further unloading will follow a path that is the extension of the curve ABC.

As already mentioned, the class of models defined by these rules was shown by Jayaku-
mar (1987) to describe the behavior of DEMs, which have an underlying physical model, and
so they are expected to produce reasonable hysteretic behavior. Chiang (1992) later demon-
strated the relationship between the initial loading curve f (x,r) in equation (3) and the
yield strength distribution function ¢ (r#) in equation (2), including the case of deteriorating
hysteretic models.
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2.1. Masing Shear-building Model

Jayakumar and Beck (1988) performed system identification of a full-scale six-story steel
building tested pseudo-dynamically in the laboratory of the Building Research Institute in
Tsukuba, Japan. Substantial yielding occurred in the lower stories during the test, which was
an experimental simulation under the Taft record from the 1952 Kern County earthquake in
California. For the identification, Jayakumar and Beck used a class of shear-building mod-
els in which a Masing model was used to describe the relationship between the story shear
forces and the inter-story drifts. Using a least-squares output-error approach, multiple opti-
mal models were obtained, depending on the initial choice of the model parameters given
to the optimization algorithm, although all these models gave almost exactly the same good
match of the measured response. This apparent non-uniqueness suggested that the chosen
class of models was unidentifiable, or at least almost so. The goal of this current work is
to study this same class of hysteretic shear-building models with simulated noisy seismic
response data to give further insight into their identification and to demonstrate the power
of Bayesian updating and model class selection, as implemented using the new TMCMC
stochastic simulation algorithm.

Consider a structural model with a rigid foundation where the vector of relative displace-
ments of the structure x (¢) is related to the ground acceleration ¥ (¢) as follows:

M3+ Ci + R = —Mb¥ (1) 5)

where M and C are the mass and viscous-damping matrices, R is the restoring force vector,
and b is the pseudo-static influence vector. The inter-story shear force at the ith story is given
by:

Ri=ri—rip (6)

where the relationship between inter-story shear forces and inter-story drifts is given by:

] (7

where K; is the initial inter-story stiffness, r,; is the story ultimate strength and the smooth-
ness of the transition from elastic to plastic response is controlled by the positive parameter
a;. Figure 3 shows how the shape of the initial loading curve is influenced by a;. Note that for
i = n in equation (6), r,.; = 0, and for i = 1 in equation (7), xo = 0. This class of models
represents a sub-class of Masing models; through the choice of initial loading curve, a wide
variety of hysteretic models can be described by the two extended Masing rules, including
many existing hysteretic models (Jayakumar, 1987; Thyagarajan, 1989).

The basic form of the force-deformation relationship given in equation (7) is similar to
that of a Bouc—Wen model. The major difference is that this equation serves only as the ini-
tial loading curve that must be combined with the two extended Masing rules, rather than
giving a complete description of the structural response. A potentially important advantage
of the Masing shear-building model is that most of the model parameters correspond to ac-
tual physical properties (the initial stiffness and ultimate strength) and initial estimates can

ri

ri = K; (i — xi-1) {1 -

u,i
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Figure 3. Plots of “virgin” loading curves of the Masing model (equation (7)) for different values of the
elastic-to-plastic transition parameter a;.

be calculated from material properties and structural drawings (Jayakumar, 1987). This in-
formation could be explicitly incorporated into the prior distribution in the Bayesian model
updating procedure presented in this work.

3. BAYESIAN UPDATING AND PREDICTIONS USING STOCHASTIC
SIMULATION

3.1. Bayesian Model Updating

Consider a Bayesian model class M, which is characterized by: (i) a set of predictive PDFs,
p (D]6, M), for system response D that is parameterized by N, model parameters 0 € © €
R™r; and (ii) a chosen prior PDF p (6|M) that can incorporate existing knowledge of the
system. The prior PDF is chosen to express the initial plausibility of each model in the class
M defined by the value of the parameter vector 6.

Now suppose a set of data D from the system is available. The goal of Bayesian updating
is to use D to update the probability distribution over the parameters to give the posterior PDF
p (0D, M) based on Bayes’ theorem:

p @D, M) < p(D|0, M) p (0| M). (®)

Here, p (D)0, M) as a function of @ is called the likelihood function. The constant of
the proportionality is the reciprocal of p (D| M), the evidence for model class M, and it is
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discussed later. The posterior PDF gives the updated plausibility of each model in M when
the information in the data D is incorporated.

The model classes with their likelihood functions and prior PDFs that are chosen in this
work are given later in the Example section. The samples are generated from the posterior
PDF in Equation (8) using the TMCMC algorithm introduced by Ching and Chen (2007),
which is summarized in the Appendix.

3.2. Predictions using the Posterior Robust Predictive PDF

A common use of posterior probability distributions is to make inferences about future events
based on past observations (Beck, 1989; Beck and Katafygiotis, 1998). Define X! as a
sequence of M observations of some vector quantity x at increasing discrete time instants,
that is XY = {x, ..., xy}. Now consider the case where the first N observations, X}, are
contained in the data set Dy. A robust predictive PDF may be used to make inferences about
the remaining observations X | based on the model class M, with each model defined by
the parameter vector ¢, by applying the Theorem of Total Probability:

p (XY, 1Dy, M) = / p (XY, 1Dy, 0. M) p 01Dy, M) do. ©)

If the model class M is globally identifiable on Dy then the most probable value of the
parameter vector, 0, may be used with Laplace’s asymptotic approximation of the integral
in equation (9) to obtain an estimate of the robust predictive PDF (Beck, 1989; Beck and
Katafygiotis, 1998; Papadimitriou et al., 2001):

P (XN, 1Dy, M) & p (XN,10, M) 10)

This approximation is accurate to O(1/N), so the size, N, of the dataset must be reason-
ably large for an acceptable approximation. Alternatively, the integral in equation (9) can be
estimated by using samples 0, k = 1, ..., K, from the posterior distribution of 6, to replace
the theoretical mean in equation (9) by the corresponding sample mean. Therefore, the robust
predictive PDF may be approximated by:

l .
P (XD, M) = 2 37 p (X¥16:, M) an
i=l1

This approximation is applicable regardless of the size, NV, of the dataset Dy and whether
or not the model class M is identifiable based on Dy; its accuracy depends only on the
number of samples K.
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4. BAYESIAN MODEL CLASS SELECTION

Bayesian model class selection (or model comparison) is essentially Bayesian updating at
the model class level to make comparisons between alternative candidate model classes for
predicting the response of a system (MacKay, 2003; Beck and Yuen, 2004). It has long been
recognized that comparisons between model classes should factor in not only the quality of
the data fit, but also the complexity of the model. Jeffreys (1961) referred to the need for
a “simplicity postulate” which would give lower prior probabilities to more complex mod-
els. The basic idea is a type of Ockham’s razor that simpler models that are consistent with
the data should be preferred over more complex models which offer only slight improve-
ments in the fit to the data. Box and Jenkins (1970) emphasized this idea for time series
analysis, referring to it as developing parsimonious models, but a quantitative form for a
Principle of Model Parsimony was not available until the pioneering work by Akaike (1974).
AIC (Akaike’s Information Criterion) utilized a penalty against using a larger number of
uncertain (adjustable) parameters in combination with a quantification of the model data-fit
based on the log likelihood of the optimal model in the model class; however, the form of
the penalty term did not have a very rigorous basis. Schwartz’s BIC (1978) has a modified
penalty term derived from a more rigorous asymptotic analysis of Bayesian updating at the
model class level. This, and subsequent work (Gull, 1989; McKay, 1992), made it clear that
Bayes’ Theorem at the model class level automatically enforces model parsimony without
the need for ad-hoc penalty terms.

Consider a set M = {Ml, My, o oo M NM} of N, candidate model classes for repre-
senting a system. Given data D, the posterior probability of each model class P (M‘,» |D, M) ,
j=1,...,Ny,is:

p (DIM;) P (M;IM)
Ny

117 (DIM;) P (M;IM)

P (M;|D,M) = (12)

i=

Generally, the probability of a model class is dominated by its evidence p (Dl./\/l j).
Gull (1989) showed that the evidence can be decomposed into a “data-fit” factor and a factor
that penalizes model complexity, which he referred to as the Ockham factor, in reference
to Ockham’s razor: “Pluralitas non est ponenda sine neccesitate” (“entities should not be
multiplied unnecessarily”’). Thus, as noted above, Bayes’ Theorem at the model class level
automatically incorporates a Principle of Model Parsimony without the use of any ad-hoc
concepts.

4.1. Information-Theoretic Interpretation of the Evidence for a Model Class

Further insight into the form of this penalty against complexity can be obtained by consid-
ering the evidence from an information-theoretic point of view, as noted in Beck and Yuen
(2004) and subsequently extended by Ching et al. (2005). Since the posterior probability
distribution over € ; is by definition normalized to unity,

In [p (DIM;)] =In[p (D|M,-)]/p(ej|7>, M;)do;. (13)
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Furthermore, since the evidence is independent of & ;, we can bring it inside the integral,
and then make substitutions according to Bayes’ Theorem to find that:

In[p(DIM;)] = /ln [p (Dli’(ejt/llglj\/(f;l/\/lj)} P (0;1D, M;) do,

— /ln [p (D16, M;)] p (6;1D, M;) db);

p (6,10, M;) ‘ N a.
/m[ o (0] } p (6,1D, M;) do;. (14)

This formulation for the log evidence for model class M ;, shows that it is the differ-
ence between two terms: the first term is the posterior mean of the log-likelihood function,
which is a measure of the average data fit for model class M, while the second term is
the relative entropy between the prior and posterior distributions (Shannon, 1948; Kullback
and Leibler, 1951), which is a measure of the information gained about the parameters 6
from the data D. Therefore, the log evidence is comprised of a data-fit term and a term
which provides a penalty against more “complex” models, that is, those that extract more
information from the data. This gives an intuitive understanding of why the application of
Bayes’ Theorem at the model class level automatically enforces Ockham’s razor. Although
this information-theoretic interpretation was given in Beck and Yuen (2004), they derived
it using a large-sample Laplace asymptotic approximation that depended on global iden-
tifiability of the model classes. In that case, the term representing the posterior mean of the
log-likelihood function is approximated by the log-likelihood evaluated at the most probable
value ; of the parameter vector for model class M ;.

4.2. Evaluation of the Evidence for a Model Class

Using the Theorem of Total Probability, the evidence can be expressed as:

The most straightforward approach to evaluating the evidence, in the typical case where
the integral in equation (15) is too complex to be analytically integrated and of too high
a dimension for numerical quadrature, is to use stochastic simulation with samples drawn
from the prior PDF p (9j|Mj). However, it is often the case that the main support regions
of the prior are very different from that of the likelihood function p (Dl@ M j), which is
usually concentrated in a relatively small volume in the parameter space for M. Thus, a
straightforward application of common stochastic simulation methods, such as Monte Carlo
simulation, performs poorly, usually giving biased estimates of the evidence.

Beck and Yuen (2004) used an approximation for the evidence based on Laplace’s
method of asymptotic approximation of integrals (MacKay, 1991; Beck and Katafygiotis,
1991, 1998). This approximation is valid for globally identifiable model classes when there
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is a large amount of data (which ensures that the posterior PDF is very peaked). Beck and
Yuen (2004) showed that this method is effective under these conditions for model class
selection for dynamical systems. In cases where these criteria are not met, a method for esti-
mating the evidence by using samples drawn from the posterior distribution was introduced
by Ching et al. (2005), in conjunction with the Gibbs sampler. However, this is not applicable
when using the M-H algorithm due to the presence of repeated samples as a result of the way
that the algorithm works.

The TMCMC algorithm, in addition to performing updating for a model class, also pro-
vides an estimate of the evidence for the model class. As described in Step 4 in the Appendix,
when generating samples for the mth target PDF, re-sampling is performed on the samples

from the (m — 1)th level, 9,({'"_1), k = 1,..., N. The re-sampling weight for each sample,

w (9,(;”_1)), is the ratio of the target PDFs for the m th and (m — 1)th levels, evaluated at
7 (m=1)

0,

7 (m=1)

(~(m_1)) » <D|9,((m_l), M)ﬂm ) <0k |M)
w et
k » (Dlé](cm_l)ﬂ M)ﬁmq » (é/im_l)|M>

=p(D@$”CNQm%”ﬂ (16)

If N is chosen to be sufficiently large, then the samples é,((m_l), k=1,..., N, are
distributed according to the target PDF f,,_, (0(’”_”) for the (m — 1)th level that is given by

normalizing p (D|6" Y, M)'Bm_‘ p (0"~V|M). Therefore, the expectation of w (6"~")

under this PDF is approximated by the sample mean S,, of w (é,((m_l)> ,k=1,...,N:

L ey [ p (DO, MP p OIM)
S = Zw(ek )“/ p(Dw,M)f’fm-'p(ew)f”"l(e)de

[ p (D10, M) p 0| M) do
[ p (DO, M)P»=1 p (O|M)dO’

a7)

The products of these means of the re-sampling weights for all of the levels during one
run of the TMCMC algorithm, therefore gives the approximation:

e [P (DO, M) p(OIM)YdO [ p (DI, M) p (0] M)dO
H S, A~ —
" [ pPo (D16, M) p (01 M) d6 [ p@M)de

m=1
_ /p(D|6?,/\/l)p(H|./\/l)d6? = »(DIM). (18)

M
Therefore, [] S, is an estimator of the evidence, which is shown by Ching and Chen

m=1
(2007) to be asymptotically unbiased.
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5. EXAMPLE USING SIMULATED SEISMIC RESPONSE DATA

5.1. Simulated Structure and Responses

To investigate the performance of the TMCMC algorithm with the class of Masing mod-
els for identification of hysteretic systems, we present results of a study using simulated
dynamic response data. The data is generated using a three-story Masing shear-building sys-
tem described by equations (5)—(7) and the two extended Masing rules. Each story has a
mass of 1.25x10° kg and a small-amplitude inter-story stiffness of K; = 2.5 x 10® N/m.
The ultimate strength of each story is r,; = 1.75 x 10° N, and the value of the elastic-to-
plastic transition parameter for each story is a; = 4. The natural frequencies of the structure
(based on a linear model given by the small-amplitude stiffnesses) are 3.17 Hz, 8.88 Hz and
12.86 Hz. The structure is excited with the Sylmar ground-motion record recorded at Olive
View Hospital during the 1994 Northridge earthquake in California (COSMOS virtual data
center: http://db.cosmos-eq.org/). The resulting response has peak drifts of 2.77 cm, 0.85 cm
and 0.50 cm for the first, second and third stories, respectively. Viscous damping is provided
in the system through a Rayleigh damping matrix (sum of a term proportional to the mass
matrix M and a term proportional to the small-amplitude stiffness matrix K) with coefficients
cy = 0.293 and cx = 2.64 x 10~* chosen to provide 1% of critical damping in the first and
second modes.

Two sets of response data are simulated to provide the data for system identification.
The first set corresponds to the inter-story drift time histories, referred to henceforth as data
Dhrisi- To simulate measurement noise, a small amount of Gaussian discrete white noise
is added to each channel of generated data, with a standard deviation of 0.1 cm for each
measurement, which is equal to about 20% of the root-mean-square value of the drift time
histories. This simulated data is shown in Figure 4. Each channel corresponds to 500 data
points at a sampling interval of 0.02 s. While dynamic measurements of inter-story drift
are possible, and have been performed in laboratory test structures, their measurement in
structures in the field is rare. Accelerometers are more commonly used for this purpose, so
the second set of data, D,.., consists of simulated absolute accelerations of each floor. Again,
Gaussian discrete white noise is added to the responses, this time with a standard deviation of
0.5 m/s?, which is equal to about 20% of the root-mean-square value of the acceleration time
histories. Simulated accelerations are plotted in Figure 5. The hysteresis loops generated by
the Sylmar ground motion for each story are shown in Figure 6. As indicated by the figure,
yielding in the simulated structure occurs primarily in the first story, with some moderately
nonlinear behavior in the second story and almost linear response for the third story.

5.2. Identification Model Classes: Likelihood Functions and Prior PDFs

Four model classes are considered for system identification. All of them use the Masing
shear-building model in equations (5)—(7) to generate the predicted response, q,(i), i =1,
.o, Ngyt =1, ..., Ny, for N; = 3 channels of N, = 500 time-points at a time-step of 0.02
s. The vector 8 of uncertain model parameters include those defining the viscous-damping
matrix C, thatis, ¢y and ck, and the nine hysteretic structural parameters K;, r,; and a;, i =
1,2, 3, in equation (7). The prediction error, which is defined to be the difference between
the uncertain system output and the identification model output, is taken as Gaussian (based
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Figure 4. Simulated inter-story drift time histories. The solid plots are the actual response of the model,
and the dashed plots represent the “measured” response with added white noise.

on the Principle of Maximum Information Entropy; Jaynes, 2003) with zero mean and an
equal (uncertain) variance 02 for each channel. Therefore, the likelihood function is:

Ny N,
1 1 . iy
pDIO. M) = ———exp =55 > (4" 0) ~ ") (19)
(27[0'2 I SR
q

where c}t(i) is the measurement for channel i at time-point 7.

The mass matrix M is equal to the actual mass matrix, which is reasonable since the mass
distribution can usually be quite accurately evaluated based on structural drawings. The three
small-amplitude stiffnesses and ultimate strengths of the three stories are to be estimated,
along with the elastic-to-plastic transition parameters a;, which are constrained to be equal
for all three stories for model classes M and M but are allowed to vary between stories for
model classes M3 and M. Rayleigh damping coefficients are estimated for model classes,
M, and M., as described below.

The prior probability distributions for the small-amplitude stiffnesses K; are taken to be
independent lognormal distributions with the logarithmic mean equal to log (2.5 X 108) and
a logarithmic standard deviation of 0.5. The prior PDFs for the peak inter-story strengths r,, ;
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Figure 5. Simulated acceleration time histories. The solid plots are the actual response of the model,
and the dashed plots represent the “measured” response with added white noise.
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Figure 6. Simulated inter-story shear forces plotted against inter-story drifts.
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Figure 7. Prior PDFs for the small-amplitude stiffness K;, ultimate strength r,; and elastic-to-plastic
transition parameter «; for the jth story. The dashed lines indicate the values of the parameters used to
generate the data.

are also independent lognormal distributions with a logarithmic means of log (2.50 X 106)
and a logarithmic standard deviation of 0.5. The elastic-to-plastic transition parameter o; is
also lognormally distributed with a logarithmic mean of log (4) and a logarithmic standard
deviation of 0.5. Plots of the prior PDFs for K;, r, ;, and a; are shown in Figure 7.

The prediction-error variance for the identification with drift records is assumed to be
equal for all three stories and the prior PDF for 63, 7, 1s uniformly distributed between 0 and
2.5 x 107>, which is approximately one-half of the mean-square of the “measured” drift time
histories. Similarly, the prediction-error variance for identification with acceleration records,
2., is equal for all the stories and is uniformly distributed between 0 and 3, which again is
approximately one-half the mean-square of the “measured” acceleration time histories.

Model classes M and M35 contain no Rayleigh viscous-damping matrix, whereas model
classes M, and M, do and so damping coefficients ¢y, and cg are included as uncertain pa-
rameters to be updated for those two model classes. The prior PDF for ¢y is a uniform
distribution between 0 and 1.5, and the prior PDF for cg is a uniform distribution between 0
and 1.5 x 1073, For both coefficients, the range of the prior PDF is more than five times the
actual value used to generate the data. It should be noted that the model used to generate the
data is contained in model classes M, and M,.

5.3. Model Updating and Model Class Selection with Drift Time Histories

For each model class, three runs were performed using the TMCMC algorithm. Each run
used 1000 samples per level. Between 19 to 23 levels were needed to go from the prior PDF
to the posterior PDF in a given run. Figure 8 shows how the samples in the {ru,l , K 1} space
converge for a run using model class M, as the tempering parameter f increases, where
the model class is globally identifiable. Figure 9 shows the convergence of samples in the
{ru,_g, K3} space for model class M,, where the model class is close to unidentifiable in the
r, 3-direction, because of the lack of third-story yielding in the data, as discussed later.
Table 1 summarizes the results of the stochastic simulations for all four model classes.
The most probable values of each parameter are shown, calculated based on a lognormal fit
of the aggregated samples of the three runs for each model class. This is not the same as the
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TMCMC algorithm when updating model class M, with drift data. Repeated samples are indicated by
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Table 1. The most probable parameter values for model updating with drift data obtained
from both a lognormal fit to the samples generated from stochastic simulation, shown
with standard deviations in parentheses, and numerical optimization of the un—normali-
zed posterior PDFs, shown with the difference from the simulation estimate in brackets.

M, M, M3 My

Sim. Opt. Sim. Opt. Sim. Opt. Sim. Opt.
K, 2.523 2525 2.501 2.504 2.531 2525 2.510  2.507
103 N/m  (0.007) [0.002] (0.015) [0.003] (0.009) [-0.006] (0.017) [-0.003]
K> 2503  2.500 2486  2.488 2477 2483 2468 2472
103 N/m (0.012) [-0.003] (0.021) [0.002] (0.019) [0.006] (0.026) [0.004]
K; 2492 2495 2474 2476 2.530 2522 2472 2492
108 N/m  (0.013) [0.003] (0.017) [-0.002] (0.022) [-0.008] (0.018) [0.020]
Fu,l 1.752  1.752 1.752  1.753 1.747  1.747 1.749  1.751
105N (0.005) [0.000] (0.004) [0.001] (0.005) [0.000] (0.005) [0.002]
Tun 1.756  1.764 1.809  1.815 1.691  1.685 1.757  1.748
10°N (0.036) [0.008] (0.039) [0.006] (0.066) [-0.006] (0.066) [-0.009]
Tu3 1.736  1.731 2480  2.061 2725  2.634 2714 2582
10°N (0.129) [-0.005] (0.901) [-0.419] (0.972) [-0.091] (1.140) [-0.132]
o 3916 3.890 3911 3922 3.899 3949 3.879  3.891

(0.110) [-0.026] (0.103) [0.011] (0.110) [0.060] (0.098) [0.012]
o2 = = =a =a 4513 4542 4350 4479

(0.643) [0.029] (0.496) [0.129]
as3 =a =a =a =a 1.879  2.148 3.783  2.709
(0.445) 1[0.269] (1.571) [-1.074]

cm 0.000  0.000 0.293  0.294 0.000  0.000 0.261  0.299

(fixed) (fixed) (0.049) [0.001] (fixed) (fixed) (0.061) [0.038]
Ck 0.000  0.000 3269 3.021 0.000  0.000 3.474  3.073
1074 (fixed) (fixed) (0.660) [-0.248] (fixed) (fixed) (1.156) [-0.401]
o? 1.139  1.129 1.021  1.009 1.130  1.125 1.032  1.008

10°°m? (0.044) [-0.010] (0.041) [-0.012] (0.043) [-0.005] (0.036) [-0.024]

sample mean, although the values are close for parameters with small uncertainties. For the
purposes of comparison, the most probable parameter values for each model class are also
calculated by numerical optimization of the posterior PDF, and are shown in Table 1. The val-
ues obtained by optimization are within one standard deviation of the corresponding values
obtained by stochastic simulation. It should be noted that convergence of the optimization
algorithm was achieved using initial conditions based on the simulation results, otherwise
there would have been difficulties in the optimization due to ill-conditioning (essentially a
lack of identifiability), particularly for model classes M3 and My, as will be seen later.

For model classes M and M,, the estimates of the three stiffness parameters are fairly
well-constrained (see Figures 8 and 9). The estimate for the first-story strength is also very
tightly constrained (e.g. Figure 8 for M), but the second-story strength is somewhat less
pinned down and the third-story strength has a relatively large uncertainty (e.g. Figure 9 for
M.). This behavior can be explained by looking at Figure 6; since the first story is subjected
to substantial yielding, much information about its ultimate strength is available, but since
no appreciable yielding occurs in the third story, the data only provides information that
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Figure 10. Normalized histograms for r, 3 calculated using the samples shown in Figure 9 from one run
of the TMCMC algorithm when updating model class M, with drift data.

low values of the third-story strength are not plausible, as can by seen in Figure 9 by the
way the samples move between the prior and the posterior. Figure 10 also illustrates this by
showing the evolution of the histogram of r, ;. Note that for the higher values of ultimate
story strength, the histogram for the final level has the same shape as the prior PDF. This
is because there is very little information in the data about the upper limit of the ultimate
strength of the third story, so the posterior PDF there is limited by the prior PDF. This makes
sense, as the prior information must take precedence when no useful information is provided
by the data.

The estimates of the stiffness parameters for model classes M3 and M, are still fairly
tightly constrained, as can be seen from Table 1. However, the second and third stories ex-
hibit more complicated behavior in the {r, ;, a;} space. For model classes M, and M, the
manifold of most probable (or plausible) models is essentially constrained to move along a
curve in the parameter space where only r, 3 varies, because the value of a; is pinned down
for all three stories by the yielding in the first story. Model class M3, which does not con-
strain the elastic-to-plastic transition parameters to be equal for all stories, has a manifold
of most probable models that exhibits interaction between the ultimate story strength and
elastic-to-plastic transition parameters for the second and third stories. Figure 11 shows how
samples in the {r, 3, a3} space converge during one run of the TMCMC algorithm when up-
dating model class M with the drift data. This type of geometry cannot be well-represented
by an asymptotic approximation, and the numerical optimization necessary to make such an
approximation is also difficult to perform without a good initial estimate of the parameters.

The samples from updating model class M, are also of interest. Figure 12 shows the
aggregate samples for the final level of all three simulation runs using drift data, plotted
in the {r,;, a;} space for each story. The first-story parameters are globally identifiable, as
expected. The second-story parameters exhibit a manifold of most probable models similar
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Figure 11. Plots of the samples in the {r, 3, a3} space from several “levels” of one run of the TMCMC
algorithm when updating model class M; with drift data. Repeated samples are indicated by size and
shade of markers.

to those shown in Figure 11 for model class M3. However, the third story parameters are
not concentrated along a manifold, but are spread through the {r, 3, a3} space. A clear lower
bound on the samples is evident, but the upper bounds are essentially constrained only by
the prior PDF. Since the third story experienced almost no nonlinear behavior, this lower
bound on the yielding parameters is all the information that can be extracted. It is possible
that for model class M3, the third-story samples are concentrated along this lower bound (see
Figure 11) in an attempt to compensate for the lack of viscous damping, because in this region
the associated hysteretic energy dissipation is largest. In model class My, the identified
viscous-damping parameters are fairly close to the values used to generate the data, thus no
additional energy dissipation is needed, and so the parameters associated with third-story
yielding are essentially free away from the “lower bound” (Figure 12). This geometry cannot
be represented with any type of asymptotic approximation and it is even more challenging to
perform optimization here than for model class M3.

Results of Bayesian model class selection for model classes updated with drift data are
shown in Table 2. The log-evidence and average log-likelihood function over the posterior
PDF that are estimated from stochastic simulation are shown, along with the information
gain, which is not directly estimated but rather calculated from the other two quantities us-
ing equation (14). The evidence clearly favors model class M,, which is unsurprising as it
contains the model used to generate the data and has three fewer parameters than the other
model class, My, containing the data-generation model. The improvement in the data-fit for
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Figure 12. Aggregate samples from the final level of three runs of the TMCMC algorithm when updating
model class M, with drift data, plotted in the {r,;, a;} space for all three stories.

Table 2. Bayesian model class selection results for drift data. The information gain is the
difference between the average data fit and the log of the evidence, which are estimated
using stochastic simulation.

Model Class ~ Average Data Fit ~ Information Gain ~ Log Evidence = Probability
M, 8138.0 43.7 8094.3 0.0000
M, 8219.7 45.9 8173.8 0.8022
M; 8140.0 50.0 8090.0 0.0000
M,y 8220.1 47.7 8172.4 0.1978

model class M, more than offsets the increased complexity of the model class (which is
indicated by the larger information gain) compared to model class M.

Model class M3 not only gives a poorer data fit than M, but it also has a larger in-
formation gain, while model class M, exhibits a slightly improved data fit compared to
M., (possibly due to over-fitting of noise), which does not balance out the extra information
needed to update the additional model parameters.

The results in Table 2 also show that model class M3 has a larger information gain than
model class My, which has two additional parameters. Figures 11 and 12 may explain this
somewhat counter-intuitive result. While the samples for model class M; are very tightly
concentrated along a manifold in the {r, 3, @3} space as seen in Figure 11, the samples for
model class M, are spread out through the same space, as seen in Figure 12 and as previ-
ously discussed. It seems reasonable that the extra information implied by the concentration
of samples on the manifold might be greater than the information needed to identify the
Rayleigh damping coefficients. This is an important point, as it shows that unlike methods
such as the AIC and BIC, the penalty against model complexity in Bayesian model class
selection is not based solely on the number of parameters, but rather on how much extra
information is extracted from the data by the inclusion of these parameters.
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Table 3. The most probable parameter values for model updating with acceleration data
obtained from both a lognormal fit to the samples generated from stochastic simulation,
shown with standard deviations in parentheses, and numerical optimization of the un—
normalized posterior PDFs, shown with the difference from the simulation estimate in
brackets.

M, M, M;s My

Sim. Opt. Sim. Opt. Sim. Opt. Sim. Opt.

K 2.503  2.501 2.500 2.500 2.523  2.526 2.500 2.499
108 N/m  (0.007) [-0.002] (0.007) [0.000]  (0.011) [0.003]  (0.007) [-0.001]

K; 2.533  2.533 2495 2.493 2.528 2.529 2499 2498
108 N/m  (0.005) [0.000]  (0.007) [-0.002] (0.006) [-0.001] (0.008) [-0.001]

K; 2.538 2.538 2.502  2.504 2.569 2.562 2.507 2.510
108 N/m  (0.006) [0.000]  (0.008) [0.002]  (0.028) [-0.007] (0.011) [0.003]

Tul 1.808 1.806 1.747  1.747 1.814 1.814 1.746  1.746
10° N (0.007) [-0.002] (0.007) [0.000]  (0.006) [0.000]  (0.024) [0.000]

Tun 1.752  1.743 1.743  1.752 1.733  1.733 1.749  1.740
10° N (0.019) [-0.009] (0.014) [0.009]  (0.020) [0.000]  (0.024) [-0.009]

Fu3 1.511 1.516 1.771  1.752 2.016 2.230 2417  2.389
10°N (0.020) [0.005] (0.064) [-0.019] (0.870) [0.214]  (0.795) [0.028]

o 3.873 3.922 4.023 4.032 3771  3.749 4.056 4.068
(0.087) [0.049]  (0.075) [0.009]  (0.080) [-0.022] (0.079) [0.013]

0> =a =a =a =a 4.075 4.050 3931 4.015
(0.193) [-0.025] (0.191) [0.084]

o3 =a =a =a =a 1.826 2.014 2456  2.690
(0.814) [0.188]  (0.735) [0.234]

cyu 0.000  0.000 0.296  0.303 0.000  0.000 0.303 0.310
(fixed) (fixed) (0.029) [0.007]  (fixed) (fixed) (0.028) [0.009]

Cck 0.000  0.000 2.801 2.764 0.000  0.000 2,788 2.721
10~ (fixed) (fixed) (0.159) [0.037]  (fixed) (fixed) (0.167) [-0.067]

c? 0.496  0.493 0.271 0.270 0.482 0472 0.274 0.269

m/s? (0.019) [-0.003] (0.010) [-0.001] (0.018) [-0.010] (0.010) [-0.005]

5.4. Model Updating and Model Class Selection with Acceleration Time Histories

The procedures applied to the drift response were also applied to the acceleration response.
Three runs were performed using the TMCMC algorithm for each model class, each run
using 1000 samples per level and needing between 19 to 23 levels to go from the prior
PDF to the posterior PDF in a given run. Table 3 summarizes the results of the stochastic
simulations for all four model classes, and the most probable parameter values obtained
using optimization. Again, the differences in the most probable parameter values obtained
from simulation and optimization are less than one standard deviation.

In general, the parameter uncertainties are less than those for the case where drift data is
used for updating, possibly because the acceleration records are richer in higher frequencies,
so model behavior in the elastic-to-plastic transition region plays a more significant role
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Figure 13. Aggregate samples from the final level of three runs of the TMCMC algorithm when updating
model class M, with acceleration data, plotted in the {r, ;, a;} space for all three stories.

Table 4. Bayesian model class selection results for acceleration data. The information
gain is the difference between the average data fit and the log of the evidence, which are
estimated using stochastic simulation.

Model Class  Average Data Fit  Information Gain  Log Evidence = Probability
M, -1602.7 43.5 -1646.2 0.0000
M, -1150.8 534 -1204.2 0.9989
M; -1581.9 53.7 -1635.6 0.0000
My -1150.7 60.3 -1211.0 0.0011

in the response and constrains the corresponding model parameters more than for updating
with drift records. Model class M, exhibits a much lower identified value for the ultimate
strength of the third story. This behavior is probably an attempt to compensate for the en-
ergy dissipated by the stiffness-proportional component of the viscous damping by using the
hysteretic damping. The value may be lower than that obtained by updating with drift data
because the offset which results from yielding, while important in the drift response, is at
low frequencies and therefore is not so strongly represented in the acceleration response.

Of particular note is the identification of model class M. Figure 13 shows plots of
the aggregate samples plotted in the {r,;, a;} space. Unlike the samples obtained by updat-
ing with drift records that are shown in Figure 12, the third-story yielding parameters are
concentrated along a well-defined manifold in the {r, 3, a3}, perhaps due to the increased
importance of the high-frequency response in the acceleration records, which provides more
information for the updating.

Results for model class selection using the acceleration data are shown in Table 4. Again,
model class M, is preferred, by an even wider margin than for updating with drift data, since
the improvement in data fit for model class M, is negligible. It is also of some interest that
model class M3 is preferred to model class M, while the opposite was true when drift data
was used for updating. The improvement in the data fit is large enough to justify the extra
information extracted from the data.
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6. CONCLUDING REMARKS

Identification with the class of hysteretic Masing shear-building models and the TMCMC
stochastic simulation algorithm showed good agreement with identification by optimization,
where the latter is applicable, and the uncertainties associated with the parameters provided
insights into the system, as did the results of the Bayesian model class selection. The ex-
ample presented demonstrated the ability of the TMCMC algorithm to identify regions of
high probability content that cannot be well-represented by asymptotic approximation. Ad-
ditionally, TMCMC readily allows for the implementation of Bayesian model class selection,
which was successfully demonstrated as a method for making quantitative comparisons be-
tween competing model classes that automatically selects models that balance complexity
against consistency with the measured data. The results also illustrate the usefulness of the
information-theoretic interpretation of Bayesian model class selection, as described in Sec-
tion 4.1; model complexity is not merely a matter of the number of uncertain (adjustable)
parameters, but rather relates to the amount of information extracted from the data by the
model class.

The example also demonstrated that, although the viscous-damping forces are rela-
tively small compared to the restoring forces, the exclusion of viscous damping from iden-
tification models can significantly alter the identified hysteretic structural parameters if vis-
cous (i.e. rate-dependent) damping is actually present in the structure. This is problematic,
because while linear viscous damping is perhaps the most commonly-used method for in-
troducing small-amplitude energy-dissipation into structural models, it is not clear that such
rate-dependent energy dissipation mechanisms are really present in civil structures. Indeed,
the coefficients for a viscous-damping model are very difficult to establish from structural
drawings during design. Furthermore, linear viscous-damping models, particularly Rayleigh
damping, have the potential to introduce large spurious forces into the calculated structural
response (Hall, 2006). In fact, the more likely source of small-amplitude energy dissipation is
friction from non-structural elements, which could be well-modeled by hysteretic elements.
This suggests that future research might study the development of initial loading curves for
Masing models which are based on ultimate strength distributions with a larger number of
elements yielding at lower force levels than in the sub-class of Masing models considered in
this work, in order to create a bi-modal distribution for ¢ (r*) in equation (2).

Other plans for future work in this area include a study of more complicated hysteretic
systems for generating data, particularly system models that are not contained in any of the
candidate model classes and, ultimately, the application of stochastic simulation methods and
Masing models to real-world data from structures that have experienced significant yielding
during earthquakes. In this case, since substantial yielding is often associated with damage,
application of stochastic simulation techniques to the class of degrading Distributed-Element
models, or the equivalent Masing models, with a finite (Cifuentes, 1983) and infinite (Chi-
ang, 1992) number of internal elements, may be important for more realistic modeling of
hysteretic structural behavior, while still employing models simple enough to be used in
design, monitoring and control applications.
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APPENDIX: TRANSITIONAL MARKOV CHAIN MONTE CARLO
METHOD

The TMCMC algorithm, introduced by Ching and Chen (2007), is a method for sampling the
posterior PDF of the model class M, which is defined by the parameter vector 8, the prior
PDF over the parameter vector, p (6|M), and the likelihood function p (D6, M), updated

with data D. This is done by sampling from a sequence of non-normalized intermediate
PDFs, f,, (@), m =0, ..., M, given by:

fn ©)  p (DIO, M)’ p (DI M) (A.1)

where the tempering parameter f,, increases monotonically with m such that g, = 0 and
B = 1. The algorithm proceeds as follows:

TMCMC Algorithm:

1. fo (@) = p (8] M)is chosen by the user and is assumed to be in a form that can be sampled
to obtain é,((o), k=1,...,N,.
2. The value of the tempering parameter for the next level, f,, is chosen such that the co-
Br=pB
efficient of variation for { (Dl@,ﬁo), ) e Jk=1,..., No} is equal to some pre-

scribed target value.

~ Bi=B
3. The plausibility weights for each sample, w (9,((0)) (Dl@,(co), "7 are calculated
fork =1,..., Ny, and so is the sample mean S; of the N, plausibility weights.

4. Samples 67,((1), k = 1,..., Ny are generated by applying the Metropolis—Hastings algo-
rithm as follows: the kth sample is drawn from a Markov Chain that starts with the lead

sample, 6,..4, equal to one of the samples {9@ i=1,..., NO} where the probability

i

~ 0
that 6., = Hf is given by w ( ) / Z ( ) The Metropolis—Hastings algorithm

is applied using a Gaussian proposal PDF that is centered at the current sample in the
ith chain; that is, if éfo) is chosen as the lead sample for, say, the third time, the proposal

PDF is centered at the second sample in the chain that has 950) as the lead. The covariance
matrix for the proposal PDF, X, is given by

_ iNZ ( (0)> ( (0) 0(0)) (9(0) (9(0)) (A.2)

where

59 _ i ((0)>9(0)/Z ( ) (A3)

Jj=1
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and c? is a control parameter that is chosen to balance the potential for large MCMC
moves with maintaining a reasonable rejection rate.
5. Steps 2 through 4 are repeated until level M, where f,, = 1, is achieved.

Section 4.2 shows how the evidence p (D|M) for the model class M may be estimated
using the TMCMC algorithm. Details and proofs concerning the statistical properties of the
estimator are given in Ching and Chen (2007).
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