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Abstract: A statistical methodology is presented for optimally locating the sensors in a structure for the
purpose of extracting from the measured data the most information about the parameters of the model used
to represent structural behavior. The methodology can be used in model updating and in damage detection
and localization applications. It properly handles the unavoidable uncertainties in the measured data as well
as the model uncertainties. The optimality criterion for the sensor locations is based on information entropy,
which is a unique measure of the uncertainty in the model parameters. The uncertainty in these parameters is
computed by a Bayesian statistical methodology, and then the entropy measure is minimized over the set of
possible sensor configurations using a genetic algorithm. The information entropy measure is also extended
to handle large uncertainties expected in the pretest nominal model of a structure. In experimental design,
the proposed entropy-based measure of uncertainty is also well-suited for making quantitative evaluations
and comparisons of the quality of the parameter estimates that can be achieved using sensor configurations
with different numbers of sensors in each configuration. Simplified models for a shear building and a truss
structure are used to illustrate the methodology.
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The goal in a structural model updating methodology is to select the model(s) from a
parameterized class of models that best fit measured dynamic data according to some
criterion. The identifiedmodels can then be used for improved structural response predictions
or structural damage detection and localization. The quality of the model updating can be
judged by the uncertainty in the model parameters and the prediction error. Specifically,
the smaller these uncertainties are, the better are the quality of the model updating and the
reliability of response predictions or of detection of damage, its localization, and assessment
of its severity.
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The difficulties associated with the inverse problem of model updating have been
addressed by several investigators (e.g., Mottershead and Friswell, 1993; Beck and
Katafygiotis, 1998; Katafygiotis and Beck, 1998; Natke and Yao, 1988). The quality of
the model updating depends on the class of mathematical models chosen, the measurement
error in the data, the number and location of sensors, and the excitation and response
bandwidth. Recently, a framework based on a Bayesian statistical methodology has been
developed (Beck and Katafygiotis, 1998, Katafygiotis and Beck, 1998; Beck, 1989) to
effectively tackle these problems, including themodeling of the uncertainties due tomodeling
error and measurement noise, the issues of nonuniqueness (Katafygiotis and Beck, 1998;
Udwadia and Sharma, 1978), and identifiability (Beck and Katafygiotis, 1998; Katafygiotis,
Lam, and Papadimitriou, 1997; Katafygiotis, Papadimitriou, and Lam, 1998), and the
problem of reliably computing the response prediction uncertainty. The methodology has
also been extended to address issues related to structural damage detection (Beck, Vanik,
and Katafygiotis, 1994; Sohn and Law, 1997; Vanik and Beck, 1998; Katafygiotis and Lam,
1997).

This study addresses the problem of improving the quality of the model parameter
estimation in relation to the location and number of sensors used. Specifically, the following
two issues will be addressed. Given a specified number of sensors, what are the best degrees
of freedom (DoF) to instrument in a structure to give the smallest uncertaintywhen identifying
the model parameters using structural response? In addition, what is the improvement in the
quality of the parameter estimates as the number of sensors placed in their optimal locations
is increased?

Previous work on the subject of optimally locating a given number of sensors on a
structure has been carried out by several investigators for bothmodel andmodal identification
problems (e.g., Shah and Udwadia, 1994; Udwadia, 1994; Kammer, 1991, 1992; Larson,
Zimmerman, and Marek, 1994; Penny, Friswell, and Garvey, 1994). In particular, Udwadia
(1994) developed a rational statistical-based approach to this problem based on Fisherós
information matrix for the model parameters. He proposed that the sensor locations that
maximize some norm of the Fisher information matrix be taken as the optimal locations. In
his examples, he chose as a òònormóó the trace of thematrix. Heredia-Zavoni and Esteva (1998)
extended this work to treat the case of large model uncertainties expected in model updating.
They proposed that optimal sensor locations should be chosen as the ones that minimize the
expected Bayesian loss function involving the trace of the inverse of the Fisher information
matrix for each model. Both approaches deal with the first issue of optimally locating a given
number of sensors in the structure, and there is no effective approach available for comparing
the quality of the parameter estimates as a function of the number of sensors placed in the
structure. The answer to the latter issue is useful formaking cost-effective decisions regarding
structural instrumentation and choice of number of sensors to be placed on the structure.

In the present approach, a different methodology for the optimal sensor location problem
is proposed based on the information entropy of the uncertain model parameters (Jaynes,
1978), which is well-suited for addressing both of the aforementioned issues. The Bayesian
framework proposed by Beck and Katafygiotis (1998) is extended to the computation of the
optimal sensor locations. The uncertainty in these parameters is computed by the Bayesian
statisticalmethodology, and then the information entropy isminimized over the set of possible
sensor configurations. Genetic algorithms are well-suited for solving the resulting discrete
optimization problem.
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It is shown that the results of the present approach are equivalent to those proposed using
the Fisher information matrix (Udwadia, 1994), provided the determinant of that matrix is
maximized and not its trace. In experimental design, the proposed information entropy is
a single measure that can be further used to explore, compare, and evaluate the benefits
from placing additional sensors in the structure and the benefits from measuring additional
structural modes. This information can help the experimentalist in the decision process
of designing a cost-effective experiment to improve the quality of the model predictions.
Optimal sensor locations are computed for a linear model of a nine-story shear building
and a 29-DoF truss model. Parametric studies illustrate how both the minimum entropy of
the parameter uncertainties and the optimal sensor configuration depend on the location of
sensors, number of sensors, location of actuators, number and type of contributing modes,
and the structural parameterization (substructuring) scheme employed.
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Let P be a parameterized class of structural models chosen to describe the input-output
behavior of a structure. Let d denote the model parameters that need to be assigned values
from a region V+d, to choose a particular modelP+d, 5P. In the statistical model updating
methodology, the values of the parametersd and their associated uncertainty are updated using
test data. The derivation of the uncertainty in the parameters d of the parameterized class of
structural models chosen to represent structural behavior is presented elsewhere (Beck and
Katafygiotis, 1998). A brief summary of their formulation and the main results are presented
in the following.

Let t+q> d, � UQg be the output (e.g., accelerations) from a particular modelP+d, at time
wq @ q�w at all Qg DoF of the structural model, where�w is a prescribed sampling interval.
Assume that onlyQ3DoF are observed, which are specified by the sensor configuration vector
� � UQg with element �l @ 4 if DoF l is observed, otherwise �l @ 3. Thus, only Q3 of the
�l ós are nonzero. The system output at Q discrete times, |+q, � UQ3 , l @ 4 � � � > Q, at the
observed degrees of freedom is

|+q, @ V3t+q> d, . V3h+q> d,> (1)

where the prediction error e+q> d, is introduced to account for the modeling error and also the
measurement error if | is the measured system output. The selection matrix V3 � U

Q3�Qg

has only one nonzero element (unity) in each row and no more than one nonzero element in
each column. The position of the nonzero elements in the selection matrix V3 depends only
on the sensor configuration vector �.

The uncertainties in the values of the parameters d and the prediction error h+q> d, are
quantified using probabilitymodels. The uncertainty in d is described by a probability density
function (PDF), which can be obtained using the class of structural modelsP, the class of
probabilistic models for the prediction error h+q> d,, and the observed dynamic dataG. Using
a linear class of models, and modeling the uncertainty in the components of h+q> d, by an
independent Gaussian PDF with mean zero and variance � 5, the updated PDF for the model
parameters d for the class of modelsP is given by the asymptotic expression for large Q:
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s+dm�>GQ >P, �@ ^ghwT+�> ad,`
4
5

+5� a�5,
4
5Qd

h{s

�
� 4

5a�5
+d� ad,W T+�> ad, +d� ad,

�
> (2)

whereGQ is the data for the firstQ discrete times, and the +l> m, element ofT+�> d, � UQd�Qd

is given by the equation (Beck and Katafygiotis, 1998):

Tlm +�> d, �@
Q[

q@4

Ct+q> d,W

Cdl

VW
3 V3

Ct+q> d,

Cdm

= (3)

The dependence of Tlm +�> d, on the sensor configuration vector is through the matrix
VW
3 V3. It is assumed for simplicity that the choice of the Q3 observed DoF gives a globally

identifiable model (Katafygiotis and Beck, 1998), that is, there is a unique most probable
model ad based onP and GQ that is given by the unique global minimum of

M+d, @
4

QQ3

Q[
q@4

��|+q,� V3t+q> d,
��5 > (4)

and the most probable value of the prediction error parameter a�
5
@ M+ad, is assumed small.

Amore convenient form forTlm +�> d, can be derived that involves explicitly the elements
of the sensor configuration vector �. Specifically, let �i +l, be a discrete function that gives
the correspondence between the system output |l of the vector | and model response ti+l, of
the vector t, i.e., i +l, � i4> = = = > Qgj, ;l � i4> = = = > Q3j and l 9@ n , �i +l, 9@ �i +n,. The
selection matrix V3 can be represented as

V3 @
Q3[
l@4

Hli+l, > (5)

where Hln � UQ3�Qg has all zero elements except for unity for the element in the lth row and
nth column. The matrix VW

3 V3 appearing in (3) can now be written in terms of � as follows:

VW
3 V3 @

Q3[
l@4

Q3[
m@4

HW
li+l, Hmi+m, @

Q3[
l@4

Hi+l,l Hli+l, @ gldj+�4> = = = > �Qg
, = (6)

Thus, (3) can be written in a more convenient form:

Tlm +�> d, �@
Qg[
o@4

�oS
+o,
lm +d,> (7)

where the quantities

S+o,
lm +d, @

Q[
q@4

�
Cto+q> d,

Cdl

Cto+q> d,

Cdm

�
(8)

depend only on the chosen model and its response at a particular DoF and are independent of
the sensor configuration vector �.
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The optimal value ad of d is simply the most probable d based on GQ and P. When we
are doing experimental design for choosing the sensor location, GQ is not known and
so ad is uncertain. Note also that for a given sensor configuration, T+ad, depends onGQ only
through ad.

Suppose the input (excitation) history a]Q is prescribed for the test to identify the model
parameters d. By the previous assumptions, the uncertainty in the system output history, |

q
,

q @ 4> � � � > Q, is modeled by a Gaussian PDF with mean V3t+q> d3, and variance �5
3 for each

component, where d3 and �5
3 are the nominal model parameters and prediction error variance

that are chosen by the designer to be representative for the structure and the given classes of
models.

By the law of large numbers, as Q$4:

M+d3, @
4

QQ3

Q[
q@4

��|+q,� V3t+q> d3,
��5 $ 4

Q3

Q3[
l@4

(^h5i+l, ` @ �5
3= (9)

Also, since ad is also the maximum likelihood estimate, we know that ad$ d3 asQ$4,

conditional on the nominal model, so a�
5
@ M+ad,$ M+d3, @ �5

3 and

Tlm +�> ad,$ Tlm +�> d3, �@
Qg[
o@4

�oS
+o,
lm +d3,= (10)

Thus, for large Q, the PDF s+dm�>GQ >P, in (2), which quantifies the uncertainty in d,

is a Gaussian PDF with mean ad �@ d3 and covariance matrix a�
5
T+�> ad,�4 �@ �5

3T+�> d3,
�4.

Let s+dmd3> �3> �>P, denote this Gaussian PDF resulting for large Q, which depends
on the sensor configuration vector � and the chosen nominal structural and prediction-error
model parameters. We wish to minimize the uncertainty in d over the sensor locations, that
is, over the �l ós where exactly Q3 of the �l ós are unity and the rest are zero. As a measure of
the uncertainty in d, we take its (information) entropy (Jaynes, 1978):

Kd +d3> �3> �>P, @ (d ^� oq s+dmd3> �3> �>P,` (11)

@
4

5
Qd ^oq+5� , . 4 . oq �5

3`�
4

5
oq ghwT+�> d3,= (12)

As first shown by Shannon (1949), the entropy is well-known as being a unique measure of
probabilistic uncertainty. Note that �5

3 does not affect the optimal sensor locations. Thus,
minimizing the uncertainty in d is equivalent to maximizing the determinant of T+�> d3,.
Note thatT+�> d, is always a positive semidefinite symmetric matrix andT+�> d3, is positive
definite since d is globally identifiable. Let � l +�> d3,> l @ 4> = = = > Qd , be the eigenvalues
of T+�> d3, so that � l +�> d3, A 3, ;l. The optimal locations for Q3 sensors are given by
maximizing
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oq ghwT+�> d3, @
Qd[
l@4

oq �l +�> d3,> (13)

or, equivalently, ghwT+�> d3, @
TQd

l@4 �l +�> d3, over � @ ^�4> = = = > �Qg
`W .

It is straightforward to ascertain that for Qg DoF and Q3 sensors, the total number of
discrete values for the sensor location vector � is

Qv @

�
Qg

Q3

�
@

Qg $

Q3$+Qg � Q3,$
= (14)

For a sufficiently large number of model degrees of freedomQg , an exhaustive search over all
possible values of � may be computationally expensive or even prohibitive. Instead, genetic
algorithms can be used that are well-suited for this type of discrete optimization problem
(Goldberg, 1989; Chan, 1997). A genetic algorithm is used in this work to perform the
optimization of the objective function.

The expressions in (7) and (8) are discrete versions of an analogous result derived by
Udwadia (1994). They have been derived here without using the result that an efficient
unbiased estimator satisfies the Cramer-Rao lower bound. Indeed, ad is simply the most
probable d based on GQ and P, whereas in Udwadiaós result, T is evaluated at the òòtrueóó
value of d and ad is the unbiased estimator of d. Udwadia (1994) maximized the trace
trT+d3, @

SQd

l@4 �l . The choice of maximizing the trace, instead of the determinant or any
other measure of the Fisher information matrix, was justified due to its computational ease
and the efficiency with which the maximization can be carried out. The choice of maximizing
ghw+T, or oq ghw+T, @

SQd

l@4 oq �l is justified in the present formulation as giving the
smallest amount of uncertainty in the parameters of the structure. It will be demonstrated
that the use of the trace in place of the determinant results in sensor configurations that are
qualitatively different from the optimal sensor configuration obtained bymaximizingghw+T,.

The present formulation of the optimal sensor location problem in terms of the
information entropy measure provides a rational procedure for comparing the uncertainty
of the estimates of the parameter values between different numbers of sensors placed at their
optimal locations in the structure. Specifically, let K be the information entropy for a sensor
configuration �, and K3 be the entropy information for some reference sensor configuration
�3 corresponding to a different number of sensors than those in the configuration vector �.
Applying (12) for each case, the changeK�K3 of the information entropy corresponding to
the change in uncertainty in the values of the parameters for � and �3 can readily be obtained
in the form

K� K3 @
4

5
oq

ghwT+�3> d3,

ghwT+�> d3,
= (15)

Let v5 be the geometrical mean of the principal variances (eigenvalues) of the covariance
matrix �5

3T+�> d3,
�4 of the distribution s+dmd3> �3> �>P,. The quantity v5 can be interpreted

as giving the overall spread of the distribution s+dmd3> �3> �>P, about the mean value of
the structural model parameters. For two different distributions corresponding to sensor
configuration vectors � and �3, it can be readily shown that the parameter-uncertainty ratio

v

v3
@ h{s

�
K� K3

Qd

�
= (16)
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Thus, the ratio of the geometrical means of the standard deviations depends only on the
change in information entropy and the number of model parameters involved. Thus, this ratio
can be equivalently used as an alternative measure of the change in uncertainty between two
cases. In particular, a reduction (or increase) of the entropy corresponds to a reduction (or
increase) in the ratio v@v3, while two sensor configuration cases with the same information
entropy correspond to ratio v@v3 @ 4. In the applications, the change in uncertainty between
cases will be reported in terms of the ratio v@v3 since the magnitude of this ratio, compared
to unity, gives a more direct comparison of the spread of the PDF of d about its mean values
between two cases than does the magnitude of the entropy change.

�� 237,0$/ 6(1625 /2&$7,21�
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The aforementioned results assume that the updated values of the model parameters do not
deviate significantly from the nominal model parameter values d3 and �3 chosen during the
experimental design so that the updated model is close to the nominal model. However,
when an experimental design is being done, the updated model is unknown and thus the
best values for �3 and d3 are uncertain. Consider, for example, the case for which d is
used to model stiffness terms in a structure and the model updating methodology is used
to predict structural damage. Large uncertainty in the values will arise due to the possibility
of significant reduction in the stiffness of the structure that may occur due to severe damage.
For relatively large uncertainties, equation (12) has to be modified to account for all the
possible values of the model parameters d3 and the prediction error parameter �3 along with
the respective plausibility of each possible value.

One way to account for the uncertainty in d3 and �3 is to explore the sensitivity of
T about the nominal value. Alternatively, the uncertainty in d3 and �3 can be quantified
using a prescribed PDF for d3 and �3 to represent the designerós uncertainty in the model
parameters and the prediction error parameter. In this case, the information entropymeasuring
the uncertainty in d3 and �3

Kd3>� 3
+P, @ (d3>� 3 ^� oq s+d3> �3mP,` (17)

is prescribed. The problem of optimal sensor location therefore becomes the one of
minimizing the expected uncertainty in d over all possible values of d3 and �3 when test
data are to be used. Equivalently, the problem can be solved by minimizing the change in
uncertainty, that is, the change in information entropy given by

�K+�, @ Kd>d3>� 3
+�>P,� Kd3>� 3

+P, (18)

@ (d>d3>� 3
^� oq s+d> d3> �3m�>P,`� (d3>� 3

^� oq s+d3> �3mP,`= (19)

Modeling d3 and �3 as statistically independent and using the relation s+d> d3> �3m�>P, @
s+dmd3> �3> �>P, s+d3> �3m�>P,, the change in information entropy can be readily simplified
in the form
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�K+�, @

]
Kd +d3> �3> �>P, s+d3, s+�3, gd3 g�3 (20)

@
4

5
Qd

�
oq+5� , . 4 .

]
oq �5

3 g�3

�
� 4

5

]
oq ghwT+�> d3, s+d3, gd3= (21)

The integral in (20) represents the measure of uncertainty in d over all possible values d3
and �3 weighted by the plausibility of each value of d3 and �3. This is also equivalent to
taking the expectation over d3 and �3 of the information entropy in (11). Equation (21) is
derived from (20) after replacing Kd+d3> �3> �>P, by its equivalent form given in (12) and
then simplifying the resulting integral. From equation (21), it is obvious that the uncertainty
in �3 does not affect the optimal sensor locations since the first term in (21) is independent of
the sensor configuration vector �. The optimal sensor locations are obtained by minimizing
the change of uncertainty or, equivalently, maximizing the quantity

k+�, @ (d3 ^oq ghwT+�> d3,` @

]
oq ghwT+�> d3, s+d3, gd3 (22)

over � @ ^�4> = = = > �Qg
`W . The multidimensional numerical integration over d3 involved in

computing the expectation in (22) can be carried out approximately but efficiently using an
asymptotic expansion developed to treat these type of integrals (Papadimitriou, Beck, and
Katafygiotis, 1997).

In an alternative formulation (Heredia-Zavoni and Esteva, 1998), the optimal sensor
locations are obtained by minimizing the Bayesian loss function given by the expected value
of tr^T�4+�> d3,` over d3 instead of maximizing the expected value of oq^ghwT+�> d3,` over
d3, as proposed herein. The proposed formulation for the optimal sensor locations yields
the best estimates of the parameter values in the sense that these estimates correspond to the
minimum uncertainty in the values of the model parameters.

�� $33/,&$7,216

5.1. Shear Model of Building

The methodology is applied to a nine-story building represented by the mass-spring model
shown in Figure 1. The stiffnesses and masses of the nominal structure are chosen to be
equal with n3@p3 @ 4783 for each floor so that the fundamental frequency is 4Hz. Classical
normal modes are assumed, with the modal damping fixed at 8( for all modes.

To study the effects of structural parameterization on the optimal sensor location, results
are presented for the following three cases, designated by cases A, B, and C. In case A,
the uncertainty in the stiffness is assumed to be fully correlated for all stories, that is,
only one parameter d is considered with nl @ dn3, l @ 4> = = = > <. In case B, only three
uncertain parameters are considered by dividing the structure into three substructures with
n4 @ n5 @ n6 @ d4n3, n7 @ n8 @ n9 @ d5n3 and n: @ n; @ n< @ d6n3. In case C,
nine uncertain parameters are considered, one for each story stiffness, so that nl @ dln3,
l @ 4> = = = > <.

The excitation is assumed to be an impulsive base acceleration of unit magnitude, that is,
the base acceleration d+w, @ �+w,, where �+w, is the delta function. It should be noted that the
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impulse base excitation is chosen to focus on the optimal sensor location for recording seismic
response produced by a broadband earthquake excitation. Although, in principle, the impulse
excitation will excite all modes of the structure, parametric studies as a function of the number
of modes are carried out to study the effect that information from higher modes will have
on the sensor locations. Such studies are justified since in real applications the information
contained in themeasured data from higher modes may be lost due to the larger measurement-
noise-to-signal ratio for higher modes, which is partly due to the smaller response excited in
the higher modes.

Tables 1 and 2 show the variation of the uncertainty in the parameter d as a function of the
number of observed modes and number of sensors placed at the optimal locations for cases B
and C, respectively. The ratio v@v3, defined in (16), is used to measure the uncertainty, where
the reference value v3 is chosen to correspond to the optimal sensor configuration case for
which all nine degrees of freedom of the structure are instrumented with sensors and all nine
modes of the structure are observable. Results for the ratio v@v3 are presented for increasing
numbers of modes where modes are added in the order of increasing natural frequency. For
any given number of modes, the value of v@v3, and thus the uncertainty in the prediction of
the value of d, is seen to reduce as additional sensors are placed in the structure. Similarly,
for a given number of sensors, the uncertainty in the value of the model parameters is reduced
as additional modes are observable in the response. Increasing the number of sensors and/or
the number of modes has an effect of extracting more information from the data, which is
reflected in the lower values of v@v3. If too few sensors and/or modes are used, the model
parameters are essentially unidentifiable, which is reflected in the very large values of v@v3.
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7DEOH �� ,QIRUPDWLRQ HQWURS\ PHDVXUH v@v3 IRU FDVH %�

Number of Sensors
No. of modes 1 2 3 4 5 6 7 8 9

4 3.15 � 439 79.9 51.8 43.0 36.7 32.3 28.9 27.0 26.3
2 14.3 6.9 4.6 3.7 3.2 2.8 2.5 2.4 2.3
3 11.4 5.2 3.7 3.0 2.4 2.1 1.8 1.7 1.6
4 10.7 4.5 3.2 2.6 2.2 1.9 1.6 1.5 1.4
5 10.0 4.2 3.0 2.4 2.0 1.7 1.5 1.3 1.2
6 9.3 4.0 2.9 2.2 1.8 1.6 1.4 1.2 1.1
7 7.9 3.5 2.5 1.9 1.6 1.4 1.2 1.1 1.0
8 7.9 3.5 2.5 1.9 1.6 1.4 1.2 1.1 1.0
9 7.9 3.5 2.5 1.9 1.6 1.4 1.2 1.1 1.0

7DEOH �� ,QIRUPDWLRQ HQWURS\ PHDVXUH v@v3 IRU FDVH &�

In experimental design, the proposed methodology could be used as a rational procedure
for evaluating and weighing the benefits of adding more sensors in the structure against the
benefits of exciting and measuring more modes using the existing number of sensors. For
example, consider the case for which there are four sensors placed in the structure and four
observable modes. The value of the parameter-uncertainty ratio v@v3 given in Table 2 for this
case is 7=:3. Exciting and observing one more mode (fifth mode) results in an improved
quality of the parameter estimation corresponding to a lower ratio value of 5=:<. To achieve
approximately the same quality in the estimates of the model parameters using additional
sensors with the original four modes, one needs to add at least three more sensors in the
structure to get a reduction of the information entropy to the ratio level of 5=9;. Thus, the
proposed method can help guide the design of the experiment with respect to which direction
to proceed in improving the quality of the estimates. The final decision on whether to use
more sensors or excite and observe more modes will depend on the number of sensors avail-
able and their cost, as well as the feasibility and cost of exciting and measuring more modes.

Figure 2 shows the ratio v@v3 values as a function of the number of sensors for the case
for which all nine modes of the structure are observed in the data. Results of the ratio v@v3
are presented for both the optimal and worst possible sensor locations. It is clear from these
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plots that a given number of sensors placed at their optimal configuration may yield estimates
of the model parameters that are much better than the ones obtained by a larger number of
sensors arbitrarily placed in the structure. For example, two sensors placed at their optimal
location for the case A, B, and C will provide a better estimate than, respectively, 4, 3, and
3 sensors placed at the worst location. Thus, optimizing the sensor location in a structure is
equivalent to optimizing the cost of instrumentation. It is also seen for each case A, B, and
C in Figure 2 that the ratio vr@vz between the values of v computed at the optimal and worst
sensor locations decreases monotonically with the number of sensors and becomes relatively
small as the number of sensors approaches the number of degrees of freedom. These results
clearly indicate the importance of optimizing the location of the sensors in the structure,
especially for a relatively small number of sensors compared to the number of degrees of
freedom.

In case A, the optimal location of Q3 sensors is found to be at the Q3 highest floors of
the uniform shear building. The worst possible sensor locations corresponding to the largest
uncertainty in the parameters are found to be at the lowest Q3 floors of the shear building.
These results are valid independently of the chosen number of contributing modes and the
number of sensors.

The optimal sensor locations for cases B and C are given in Tables 3 and 4, respectively.
Values of the sensor locations are reported only for the cases for which the problem is
identifiable. Unidentifiability can easily be predicted by observing the condition number
of the matrixT. Specifically, one eigenvalue ofT equals zero for an unidentifiable structure.
Equivalently, the ratio v@v3 will be infinite provided that v3 corresponds to an identifiable
case. Usually, due to numerical errors, the eigenvalues are all different from zero and then
unidentifiability is predicted by the ratio m�pd{@�plqm, which is expected to be very large
for unidentifiable or ill-conditioned cases. Unidentifiable or almost unidentifiable cases are
easily recognized by the very high values, compared to unity, of the ratio v@v3 as shown in
Tables 1 and 2.
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7DEOH �� 2SWLPDO VHQVRU ORFDWLRQV IRU FDVH %�
Number of Sensors

No. of modes 1 2 3 4 5 6 7 8

1 3 6 3 6 9 3 5 6 9 3 4 6 8 9 3 4 5 6 8 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

2 4 3 9 3 4 9 3 4 8 9 2 3 4 5 9 2 3 4 5 8 9 2 3 4 5 7 8 9 2 3 4 5 6 7 8 9

3 9 3 9 3 4 9 3 4 5 9 2 3 4 8 9 2 3 4 5 8 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

4 3 3 9 3 4 9 3 4 6 9 3 4 5 6 9 2 3 4 6 8 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

5 3 3 9 3 4 9 3 4 5 9 3 4 5 6 9 2 3 4 5 6 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

6 3 3 9 3 4 9 2 3 6 9 2 3 4 6 9 2 3 4 5 6 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

7 3 3 9 3 6 9 2 3 6 9 2 3 5 6 9 2 3 4 5 6 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

8 3 3 9 3 6 9 3 4 6 9 2 3 4 6 9 2 3 4 5 6 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

9 3 3 9 2 3 9 2 3 6 9 2 3 5 6 9 2 3 4 5 6 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

7DEOH �� 2SWLPDO VHQVRU ORFDWLRQV IRU FDVH &�
Number of Sensors

No. of modes 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 1 2 5 6 7 8 1 2 4 5 6 7 8 1 2 4 5 6 7 8 9

3 1 4 5 8 1 2 4 7 8 1 2 3 4 7 8 1 2 3 4 7 8 9 1 2 3 4 5 7 8 9

4 1 9 2 3 9 1 2 3 8 1 2 3 8 9 1 2 3 4 8 9 1 2 3 4 5 8 9 1 2 3 5 6 7 8 9

5 1 1 3 1 2 9 1 2 3 9 1 2 3 4 9 1 2 3 4 7 9 1 2 3 4 5 7 9 1 2 3 4 5 6 7 9

6 1 1 3 1 2 3 1 2 3 9 1 2 3 4 9 1 2 3 4 7 9 1 2 3 4 6 7 9 1 2 3 4 5 6 7 9

7 1 1 3 1 2 3 1 2 3 9 1 2 3 4 9 1 2 3 4 6 9 1 2 3 4 5 6 9 1 2 3 4 5 6 7 9

8 1 1 3 1 2 3 1 2 3 9 1 2 3 4 9 1 2 3 4 6 9 1 2 3 4 5 6 9 1 2 3 4 5 6 7 9

9 1 1 3 1 2 9 1 2 3 9 1 2 3 4 9 1 2 3 4 6 9 1 2 3 4 5 6 9 1 2 3 4 5 6 7 9

Comparing the optimal sensor location results for cases A, B, and C, it is concluded that
the optimal location of the sensors depends on the number of sensors placed on the structure,
number of modes observed, and the structural parameterization scheme employed. As an
example, consider finding the optimal locations of four sensors for cases B and C. The results
for case B shown in Table 3 indicate that the exact locations of three of the sensors depend
on the number of modes contributing significantly to the response, while one sensor should
always be placed at the ninth floor. The results for case C in Table 4 indicate that for five
modes or more, three sensors should be placed at the lowest three floors and one sensor
should be placed at the highest floor. Note that these locations are different from the ones
predicted for case A for which the optimal sensor locations are at the highest four top floors.
Note also that the optimal locations for +Q3 . 4, sensors do not always contain the optimal
locations for Q3 sensors as a subset.

From the results in Tables 3 and 4, one can conclude in general that for a very small
number of sensors, specifically one sensor for case B and up to two sensors for case C, the
optimal locations are generally on the lower floors, while for a larger number of sensors,
the optimal locations consist of a combination of lower and higher floors. The number of
observable modes has some effect on the sensor location problem, but it is not strong.
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Next, the results from the entropy approach are compared to those obtained by
maximizing the trace of the Fisher information matrix (Udwadia, 1994). For case A, the
results obtained by maximizing ghw+T, or tr+T, are identical since T is a scalar in this case.
However, in almost all the results obtained for cases B and C, the optimal sensor location
measures ghw+T, and tr+T, give qualitatively different results. Specifically, tr+T, predicts
that for cases B and C, all of the Q3 sensors should be placed at the highest Q3 floors of
the shear building, independently of the number of modes and the parameterization used.
However, the locations of the sensors predicted by ghw+T, are qualitatively different. In
particular, it was found that the optimal sensor locations predicted by tr+T, in case C coincide
with the worst possible sensor locations predicted by ghw+T,. Thus, the measure tr+T, gives
sensor configurations that may correspond to the highest uncertainty in the values of the
parameters d, so it may give the worst estimates rather than the best.

The effect of the location of the actuator on the uncertainty of the parameter estimates
and the optimal sensor location is examined next for case B. Results are presented for the case
for which all nine modes are observable. The ratio v@v3 computed for 1 to 5 sensors placed
at their optimal position is plotted in Figure 3 as a function of the location of the actuator
providing the impulsive force. The location 3 corresponds to the base excitation while the
location l corresponds to the excitation at floor l. It is obvious that in this case the optimal
actuator location corresponding to the smallest value of v@v3 does not depend strongly on the
number of sensors placed in the structure. With the exception of the case of one sensor, the
optimal actuator location is predicted to be the DoF 5 at midheight of the building. It should
be noted that DoF 5 is the optimal actuator location even if 6 to 9 sensors are placed in the
structure. It was also found that the optimal actuator location depends strongly on the number
of modes that can be excited and observed in the response. Results for the optimal sensor
locations as a function of the actuator location are presented in Table 5. It is apparent that the
optimal sensor locations depend on the location of the actuator in the structure.
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7DEOH �� 2SWLPDO VHQVRU ORFDWLRQV IRU GLIIHUHQW DFWXDWRU SRVLWLRQV� &DVH %�
Actuator Number of Sensors

Position 1 2 3 4 5 6 7 8

0 3 3 9 2 3 9 2 3 6 9 2 3 5 6 9 2 3 4 5 6 9 2 3 4 5 6 8 9 2 3 4 5 6 7 8 9

1 3 2 5 2 5 6 2 3 5 6 1 2 3 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

2 2 2 5 2 5 6 2 3 5 6 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

3 5 2 5 2 3 5 2 3 5 6 1 2 3 5 6 1 2 3 4 5 6 1 2 3 4 5 6 8 1 2 3 4 5 6 7 8

4 4 4 5 4 5 8 2 4 5 8 2 3 4 5 8 2 3 4 5 6 8 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

5 5 3 5 3 5 7 3 4 5 7 2 3 4 5 8 2 3 4 5 7 8 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

6 5 4 8 4 5 8 3 4 5 8 3 4 5 7 8 2 3 4 5 7 8 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

7 7 4 7 3 4 7 3 4 7 8 3 4 5 7 8 3 4 5 6 7 8 1 3 4 5 6 7 8 1 2 3 4 5 6 7 8

8 6 4 7 3 4 7 3 4 6 7 2 3 4 6 7 2 3 4 6 7 8 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

9 6 3 7 3 6 7 3 4 6 7 3 4 5 6 7 3 4 5 6 7 8 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Additional studies on the nine-story building demonstrate that the optimal sensor
configuration also depends on the type of the excitation. For example, it depends on whether
the excitation is broad-band ambient, impulsive, or forced harmonic. Also, the optimal
actuator location depends on the parameterization used. It should be noted that the present
methodology could also be useful in experimental design for providing the optimal locations
to excite the structure to get the best estimates of the model parameters, given that a fixed
number of sensors have already been placed on the structure.

5.2. Truss Structure

The methodology is also applied to a 29-DoF truss structure shown schematically in Figure 4,
which can be viewed as a simple bridge model. It is assumed that all members of the truss
have the same sizes and that the mass of the structure is uniformly lumped at the nodes of
the truss. The values of the members cross-sectional area, D3, and the lumped mass, p3,
are chosen such that the fundamental frequency of the structure is 3=8 Hz. Classical normal
modes are assumed with the modal damping fixed at 8( for all modes. All results correspond
to an impulse excitation of unit magnitude along DoF ; shown in Figure 4. This impulse
excitation can be viewed as simulating the excitation from impact hammer tests exciting the
structure at its midspan.

To study the effects of structural parameterization on the optimal sensor location, results
are presented for the following three cases, designated by cases A, B, and C. In cases A and
B, the model parameters to be updated are selected to correspond to the part of the structure
close to the midspan. Specifically, the parameters to be updated are the ones corresponding
to the stiffness of the members 4, 5, 15, 17, 26, 27, and 16 placed close to the midspan of
the structure. This could represent the case for which the stiffnesses at a given location of a
structure are to be monitored for sudden changes caused by environmental effects producing
damage. In case A, the stiffness is assumed to be fully correlated for members 4, 5, 15, 17, 26,
27, and 16 so that there is only one uncertain parameter to be updated. In case B, the region
at the midspan of the bridge is parameterized using four uncertain parameters. Specifically,
the following substructuring is considered: n7 @ n8 @ d4n3, n48 @ n4: @ d5n3, n59 @ n5: @
d6n3, and n49 @ d7n3. In case C, the whole structure is divided into three substructures
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(see Fig. 4), with one parameter corresponding to each substructure, namely, for the first
substructure n4 @ n5 @ n6 @ n< @ n43 @ n44 @ n45 @ n46 @ n47 @ n57 @ n58 @ d4n3, for
the second substructure n7 @ n8 @ n48 @ n4: @ n59 @ n5: @ n49 @ d5n3, and for the third
substructure n9 @ n: @ n; @ n4; @ n4< @ n53 @ n54 @ n55 @ n56 @ n5; @ n5< @ d6n3.
Case C is representative of a more uniform substructuring suitable for model updating.

Tables 6, 7, and 8 show the variation of the uncertainty in the model parameters d as
a function of the number of observed modes and number of sensors placed at their optimal
locations for cases A, B, and C. Results are presented for maximizing ghw+T, or tr+T, but
only for the first five modes. The increasing number of modes is produced by adding modes
in the order of increasing natural frequency. The ratio v@v3 is used to measure uncertainty,
where for comparison purposes the reference value v3 is arbitrarily chosen to correspond to
the optimal sensor configuration case for which all 29 degreed of freedom of the structure
are instrumented with sensors and nine modes of the structure are observable. For any given
number ofmodes, the uncertainty in the value of themodel parameters is reduced as additional
sensors are placed in the structure. This is expected since increasing the number of sensors
has an effect of extracting more information from the data.

To illustrate the use of the entropy values as an aid in experimental design, consider the
entropy results shown for case C in Table 8. Assuming first that three modes are observed
with one sensor placed at the optimal location, the parameter-uncertainty ratio v@v3 is 7:6.
Placing a second sensor at the optimal location in the structure will reduce the ratio to the
value 55:. However, making an effort to excite and observe the fourth mode with only one
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7DEOH �� ,QIRUPDWLRQ HQWURS\ PHDVXUH v@v3 IRU WUXVV� &DVH $�

Number of Sensors
1 2 3 4

No. of modes DET TR DET TR DET TR DET TR
1 83.3 83.3 42.2 42.2 29.1 29.1 22.3 22.3
2 79.5 79.5 40.3 40.3 28.1 28.1 21.5 21.5
3 79.5 79.5 40.3 40.3 27.9 27.9 21.3 21.3
4 25.7 25.7 15.6 15.6 12.0 12.0 9.9 9.9
5 24.6 24.6 15.2 15.2 11.6 11.6 9.4 9.4

7DEOH �� ,QIRUPDWLRQ HQWURS\ PHDVXUH v@v3 IRU WUXVV� &DVH %�

7DEOH �� ,QIRUPDWLRQ HQWURS\ PHDVXUH v@v3 IRU WUXVV� &DVH &�

sensor will reduce the ratio to the value 84, which is considerably less than 55:. Therefore,
exciting and observing the fourth mode gives a better quality in the estimated parameters than
adding a second, third, or even fourth sensor. Given now that a fourth mode is excited and
observed with one sensor, the quality in the prediction can be improved more by adding a
second sensor than exciting and observing one additional mode. Similar observations can be
made for the other cases in Tables 6, 7, and 8. As it is seen from these tables, in general the
answer to the question of whether it is worth adding more sensors in a structure or, instead,
make an effort to excite and observe more modes depends on the number of sensors already
placed on the structure and the current number of observable modes. Moreover, it depends
also on the number and location of the actuators as well as the type of actuator forces. The
present formulation is a rational approach for comparing different experimental alternatives
and can be useful in the design of a cost-effective experiment.
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7DEOH �� 2SWLPDO VHQVRU ORFDWLRQV IRU WUXVV� &DVH $�
Number of Sensors

1 2 3 4
No. of modes DET TR DET TR DET TR DET TR

1 23 23 8 23 8 23 6 8 23 6 8 23 6 8 21 23 6 8 21 23
2 23 23 8 23 8 23 8 10 23 8 10 23 6 8 10 23 6 8 10 23
3 23 23 8 23 8 23 6 8 23 6 8 23 6 8 10 23 6 8 10 23
4 23 23 8 23 8 23 8 19 23 8 19 23 8 14 19 23 8 14 19 23
5 23 23 8 23 8 23 8 14 23 8 14 23 2 8 14 23 2 8 14 23

7DEOH ��� 2SWLPDO VHQVRU ORFDWLRQV IRU WUXVV� &DVH %�
Number of Sensors

1 2 3 4
No. of modes DET TR DET TR DET TR DET TR

1 8 23 28 6 8 23 8 10 23 28 6 8 21 23
2 23 23 10 23 8 23 10 23 25 8 10 23 10 23 25 28 6 8 10 23
3 10 23 23 27 8 23 10 23 27 6 8 23 10 23 25 27 6 8 10 23
4 8 23 8 23 8 23 8 18 23 8 19 23 8 18 19 23 8 19 23 27
5 8 23 8 23 8 23 8 14 23 8 19 23 8 14 15 23 8 14 19 23

7DEOH ��� 2SWLPDO VHQVRU ORFDWLRQV IRU WUXVV� &DVH &�
Number of Sensors

1 2 3 4
No. of modes DET TR DET TR DET TR DET TR

1 23 27 8 23 8 23 27 6 8 23 8 10 23 27 6 8 21 23
2 23 23 23 24 8 23 8 23 28 8 10 23 8 23 24 28 8 10 23 25
3 27 23 23 27 8 23 23 27 28 8 10 23 19 23 27 28 8 10 23 25
4 23 23 6 23 14 23 6 10 23 2 14 23 6 8 10 23 2 8 14 23
5 23 23 6 23 2 23 6 10 23 2 14 23 6 8 10 23 2 8 14 23

The optimal sensor locations for cases A, B, and C are given in Tables 9, 10, and 11,
respectively. Values of the sensor locations in these tables are reported only for the cases
for which the problem is identifiable. Results are given for different numbers of modes
and different numbers of sensors. In case A, it is seen that the optimal sensor location
for one sensor is DoF 23 and the optimal sensor locations for two sensors are DoF 8 and
23, independently of the number of modes contributing to the measured data. The optimal
location of an additional third sensor depends on the number of modes that are excited and
observed from the data. Similar observation can be made when four sensors are placed in the
structure.

Comparing the results for cases A and B, it is observed that the optimal sensor locations
depend on the parameterization scheme for the given substructure as well as the number of
parameters used. For example, for 4 and 5 modes, the optimal location for one sensor is
DoF 8 in case B instead of DoF 23 in case A, while the optimal locations for two sensors
are DoF 8 and 23 for both cases A and B. Comparing cases A, B, and C, it becomes evident
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that the optimal sensor locations depend not only on the parameterization scheme for each
substructure but also on the substructuring scheme employed (e.g., localized substructuring
as in cases A and B or uniform substructuring over the span of the structure as in case C).

The results from the entropy approach are also compared in Tables 6 to 11 to those
obtained by maximizing the trace of the Fisher information matrix. For case A, the results
obtained by maximizing ghw+T, or tr+T, are identical since T is a scalar in this case.
However, for cases B and C, the measures ghw+T, and tr+T, may give different optimal
sensor configurations and significantly different parameter uncertainty ratios, depending
on the number of modes observed and the number of sensors used. The most significant
difference is observed in case B for 4 or 5 modes and one sensor, which is shown in Table
10. Specifically, the optimal sensor locations are DoF 8 and DoF 23 usingghw+T, and tr+T,,
respectively. Although both locations correspond to the vertical degrees of freedom at the
midspan of two different nodes, location 23 has significantly higher uncertainty ratio than
location 8 as shown in Table 7 for 4 and 5 observable modes. For the other cases in Tables 7
and 8, the entropy measure for the optimal sensor configuration obtained using tr+T, is closer
to the entropy measure for the optimal sensor configuration obtained using ghw+T,.

The results clearly demonstrate that the optimal sensor location proposed by previous
approaches based on the Fisher information matrix depends on the norm used. However, the
entropy-based measure resolves the issue encountered in previous approaches related to the
arbitrariness in selecting an appropriate norm for the Fisher information matrix. Specifically,
the norm that best corresponds to the objective of the experiments, which is to minimize the
uncertainty in the parameter values, is ghw+T,, which arises naturally from the information
entropy-based approach. As clearly demonstrated in the numerical studies, the choice of the
trace, which is used in other approaches (e.g., Udwadia, 1994; Heredia-Zavoni and Esteva,
1998) primarily because of its convenience in computations, yields different results compared
with the entropy-based method, which has a strong information-theoretic basis. Therefore,
the use of any norms of the Fisher information matrix other than the determinant is not
recommended when determining optimal sensor locations.

Additional studies of the truss model demonstrate that the optimal sensor configuration
and the uncertainty measure also depend on the type and location of the excitation.

Finally, some computational aspects of the methodology are briefly discussed. An
exhaustive search for the optimal sensor configuration of 4, 5, 6, and 7 sensors requires that
the quantity oq ghwT+�> d3, involved in (13) be computed forQv @ 5<, 739, 6987, and 56:84
different sensor configurations, respectively, based on (14). It is found that genetic algorithms
usually require less than 5( of the total number, Qv , of the function evaluations to obtain
the optimal sensor configuration. Thus, genetic algorithms are well-suited to substantially
decrease the computational cost, especially for structures with a large number of DoF and for
configurations involving a large number of sensors.

�� &21&/86,216

The optimal sensor locations are chosen as those that most improve the quality in the
estimation of the model parameters in the presence of modeling and measuring errors.
The information entropy of the uncertainty of the model parameters is suitable for finding
the optimal sensor locations since it is a unique measure of uncertainty. The uncertainty
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in these parameters is computed using a Bayesian statistical methodology. A genetic
algorithm is especially suited for solving the resulting discrete optimization problem
involving minimizing the information entropy over all possible sets of sensor configurations.
The optimal sensor configuration can be used in conjunction with a system identification
technique to provide significantly improved and more reliable estimates of the identified
model parameters from test data. The methodology can account for large uncertainties in the
model parameters such as, for example, those encountered in damage detection applications
where large uncertainties in the location and severity of damage are expected. The optimal
sensor locations predicted by themethodology are expected to provide significantly improved
estimates of the severity and location of damage. The methodology can be extended
to compute the sensor/actuator locations, which provide the best estimates of the modal
properties of the structure. The methodology is general and is applicable to a wide range of
linear and nonlinear parametric models of structural behavior, including modal-based models
with normal and nonnormal modes. Of course, the optimal sensor locations may depend on
the class of models that is chosen to represent the structure.

The applicability and features of the optimal sensor location methodology were explored
using examples based on linear models of structural behavior. These studies show that
the optimal sensor configuration depends on the number of contributing modes, the
parameterization scheme employed, and the type and location of excitation. In experimental
design, the proposed information entropy is a single measure that can be further used to
explore, compare, and evaluate the benefits from placing additional sensors in the structure
and the benefits from measuring additional structural modes. This information can be used
to guide the design of the experiment so that the best, cost-effective quality in the model
parameter estimation is accomplished. The final decision on whether to use more sensors
and/or excite and observe more modes will depend on the number of sensors available and
their cost, as well as the feasibility and cost of exciting and measuring more modes.
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