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Abstract

A new simulation approach, called ‘subset simulation’, is proposed to compute small failure probabilities encountered in reliability
analysis of engineering systems. The basic idea is to express the failure probability as a product of larger conditional failure probabilities by
introducing intermediate failure events. With a proper choice of the conditional events, the conditional failure probabilities can be made
sufficiently large so that they can be estimated by means of simulation with a small number of samples. The original problem of calculating a
small failure probability, which is computationally demanding, is reduced to calculating a sequence of conditional probabilities, which can be
readily and efficiently estimated by means of simulation. The conditional probabilities cannot be estimated efficiently by a standard Monte
Carlo procedure, however, and so a Markov chain Monte Carlo simulation (MCS) technique based on the Metropolis algorithm is presented
for their estimation. The proposed method is robust to the number of uncertain parameters and efficient in computing small probabilities. The
efficiency of the method is demonstrated by calculating the first-excursion probabilities for a linear oscillator subjected to white noise
excitation and for a five-story nonlinear hysteretic shear building under uncertain seismic excitation. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction Both of these conditions are likely to be encountered in real

applications. Simulation methods then offer a feasible

The determination of the reliability of a system or compo-
nent usually involves calculating its complement, the prob-
ability of failure:

Pr=POEF)= JIF(O)q(G)dB (1)

where 0 =[6,,...,0,] € ® C R" represents an uncertain
state of the system with probability density function
(PDF) ¢; F is the failure region within the parameter
space O; Iz is an indicator function: Iz(0) =1if 0 € F
and Ix(0) = 0 otherwise. In practical applications, depen-
dent random variables may often be generated by some
transformation of independent random variables, and so it
is assumed without much loss of generality that the compo-
nents of @ are independent, that is, ¢(8) =[], ¢;(6)),
where for every j, g; is a one-dimensional PDF for 0.
Although Pk is written as an n-fold integral over the para-
meter space @ in Eq. (1), it cannot be efficiently evaluated
by means of direct numerical integration if the dimension n
is not small or the failure region has complicated geometry.

* Corresponding author. Tel.: +1-626-395-4132; fax: +1-626-568-2719.
E-mail address: jimbeck @caltech.edu (J.L. Beck).

means to compute Pr. Monte Carlo simulation (MCS)
[1,2] is well known to be robust to the type and dimension
of the problem. Its main drawback, however, is that it is not
suitable for finding small probabilities (e.g., P = 107%),
because the number of samples, and hence the number of
system analyses required to achieve a given accuracy, is
proportional to 1/Pg. Essentially, finding small probabilities
requires information from rare samples corresponding to
failure, and on average it would require many samples
before a failure occurs.

Importance sampling techniques [1,3-5] have been
developed over the past few decades to shift the underlying
distribution towards the failure region so as to gain informa-
tion from rare events more efficiently. The success of the
method relies on a prudent choice of the importance
sampling density (ISD), which undoubtedly requires knowl-
edge of the system in the failure region. When the dimen-
sion n of the uncertain parameter space is not too large and
the failure region F is relatively simple to describe, many
schemes for constructing the ISD, such as those based on
design point(s) (e.g. [4,6,7—10]) or adaptive pre-samples
[11-14], are found to be useful. The design point(s) or
pre-samples are often obtained numerically by optimization
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or simulation where the integrand function Ix(0)q(0) is
directly used.

When the dimension # is large and the complexity of the
problem increases, however, it may be difficult to gain suffi-
cient knowledge to construct a good ISD [15]. Therefore,
the development of efficient simulation methods for
computing small failure probabilities in high-dimensional
parameter spaces remains a challenging problem. Our
objective has been to develop successful simulation meth-
ods that can adaptively generate samples, which explore the
failure region efficiently, while at the same time retain the
robustness of MCS to the dimension of the uncertain para-
meters and the complexity of the failure region.

A new simulation approach, called subset simulation, is
presented to compute failure probabilities. It is robust to
dimension size and efficient in computing small probabil-
ities. In this approach, the failure probability is expressed as
a product of conditional probabilities of some chosen inter-
mediate failure events, the evaluation of which only requires
simulation of more frequent events. The problem of evalu-
ating a small failure probability in the original probability
space is thus replaced by a sequence of simulations of more
frequent events in the conditional probability spaces. The
conditional probabilities, however, cannot be evaluated effi-
ciently by common techniques, and therefore a Markov
chain MCS method based on the Metropolis algorithm
[16] is used.

2. Basic idea of subset simulation

For convenience, we will use F to denote the failure event
as well as its corresponding failure region in the uncertain
parameter space. Given a failure event F, let F; D F, D
-+ D F,, = F be a decreasing sequence of failure events
so that F, = ﬂf-;l F;, k=1,...,m. For example, if failure
of a system is defined as the exceedence of an uncertain
demand D over a given capacity C, that is, F = {D > C},
then a sequence of decreasing failure events can simply be
defined as F; = {D > C;}, where C, < (C, < ... < (C,, =
C. By definition of conditional probability, we have

Pp = P(F,) = P(fm] Fi) 2
i=1
m—1 m—1
= P(Fm| N F,-)P( Fi)
i=1 i=1
m—1
= P(Fm|Fm_1)P< N F,») =..
i=1

m—1
= P(F) [ PFiilF)
i=1

Eq. (2) expresses the failure probability as a product of a

sequence of conditional probabilities {P(F;,|F;): i =
1,...,m — 1} and P(F;). The idea of subset simulation is
to estimate the failure probability Pr by estimating these
quantities. When the probability of failure is estimated by
means of simulation, the difficulty often increases with
decreasing failure probability. Basically, the smaller the
P, the more rare the failure event is, and the more the
number of samples required to realize failure events for
computing Pr. Observe that, although Pk is small, by choos-
ing the intermediate failure events {F;:i=1,...,m — 1}
appropriately, the conditional probabilities involved in Eq.
(2) can be made sufficiently large so that they can be eval-
uated efficiently by simulation procedures. For example,
suppose P(F)), P(F;1|F;) ~ 0.1, i=1,2,3, then Pp~
10~* which is too small for efficient estimation by MCS.
However, the conditional probabilities, which are of the
order of 0.1, may be evaluated efficiently by simulation
because the failure events are more frequent.

The problem of simulating rare events in the original
probability space is thus replaced by a sequence of simula-
tions of more frequent events in the conditional probability
spaces.

To compute Pg based on Eq. (2), one needs to compute
the probabilities P(F)),{P(F;s|F):i=1,....m— 1}.
P(F)) can be readily estimated by MCS:

_ 1 &
P(F) =~ Py = = > I, (8) 3)
k=1

where {0, : k= 1,...,N} are independent and identically
distributed (i.i.d.) samples simulated according to PDF g. It
is natural to compute the conditional failure probabilities
based on an estimator similar to Eq. (3), which necessitates
the simulation of samples according to the conditional
distribution of @ given that it lies in F;, that is, q(0|F;) =
q(0)Ig,(0)/P(F;). Although one can follow a ‘direct’” MCS
approach and obtain such samples as those simulated from ¢
which lie in the failure region Fj, it is not efficient to do so
since on average it takes 1/P(F;) samples before one such
sample occurs. In general, the task of efficiently simulating
conditional samples is not trivial. Fortunately, this can be
achieved by a Markov chain MCS method based on the
Metropolis algorithm that is presented in the Section 3.

3. Markov chain MCS

Markov chain MCS, in particular, the Metropolis method
[2,16], is a powerful technique for simulating samples
according to an arbitrary probability distribution. In this
method, samples are simulated as the states of a Markov
chain which, under the assumption of ergodicity, has the
target distribution as its limiting stationary distribution. It
has been recently applied to adaptive importance sampling
for reliability analysis to construct an asymptotically opti-
mal importance sampling density [14]. The significance of
the Metropolis algorithm to the current application is that if
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we can simulate a sample having the conditional distri-
bution g(-|F;), then we can use the method to simulate
as the next state of the Markov chain a new sample
which will also be distributed as q(-|F,-). (Even if the
current sample is not distributed as g(-|F;), the limiting
distribution property guarantees that the distribution of
simulated samples will tend to g(-|F;) as the number of
Markov steps increases.) These Markov chain samples,
which are dependent in general, can be used for statis-
tical averaging as if they were i.i.d., although with some
reduction in efficiency.

We first describe the method to simulate from the current
sample the next Markov chain sample so that the stationary
distribution of the Markov chain is equal to g(8|F;) =
q(O)Ig (0)/P(F) = [[ [i=1 ¢;(0)1Ig (0)/P(F;), where 0=
[0;,...,0,]. The algorithm presented here is a new
modified version of the original Metropolis algorithm
since it has been found that the latter has difficulties
when simulating random vectors with many independent
components. The reader is referred to the Appendix for
the description of the original Metropolis algorithm
and the problems encountered in high dimensional
simulation.

3.1. Modified Metropolis algorithm

For every j = 1,...,n, let p;(§6), called the ‘proposal
PDF’, be a one-dimensional PDF for & centered at 6 with
the symmetry property p;(£0) = p;(6§). Generate a
sequence of samples {0,0,,...} from a given sample 0,
by computing 0, from 0, =[0,(1),...,0,(n)], k=
1,2, ..., as follows:

1. Generate a ‘candidate’ state ® : For each component j =
1,...,n, simulate & from p; ({8,(j)). Compute the ratio
ri = q;(§)/q;(8,(j)). Set O()=§; with probability
min{1,r;} and set 0(j) = 0,(j) with the remaining prob-
ability 1 — min~{1,rj}. 3 ~

2. Acceptlreject ©: Check the location of 0. If 0 € F|,
accept it as the next sample, i.e. 0., = 0; otherwise
reject it and take the current sample as the next sample,
ie. O, = 0.

In brief, we first generate a candidate state @ (dependent
on the current state) and then take either  or 0, as the next
sample 0, according to whether the candidate state lies in
F; or not.

We now show that the next sample will be distributed as
qC|F;) if the current sample is, and hence g(-|F;) is the
stationary distribution of the Markov chain. Since all the
Markov chain samples lie in F}, it is sufficient to consider
the transition between the states in F;, which is governed by
Step 1. According to Step 1, the transition of the individual
components of 0, are independent, so the transition PDF of
the Markov chain between any two states in F; can be

expressed as a product of the component transition PDFs:

PO1100) = [ [ ;8111 ()I0() “4)
=1

j=

where p; is the transition PDF for the jth component of 0.
For 0;..1() # 0, (),

Nl s . NP qi(0r+10())
Pj(9k+1(])|0k(])) =D (9k+1(1)|0k(]))mln{1, m &)
Using Eq. (5), together with the symmetry property of p;f
and the identity min{1, a/b}b = min{1, b/a}a for any posi-
tive numbers a,b, it is straightforward to show that p; satis-
fies the ‘reversibility’ condition with respect to g;:

P01 (D00 (D) = PO (N[O (D)gy(Br1 () (6)

Note that the equality in Eq. (6) is trivial when 0,.,() =
0,(j). Combining Egs. (4) and (6) and the fact that all the
states lie in F, the transition PDF for the whole state 0, also
satisfies the following reversibility condition with respect to

61('|Fi) :
p(0;1110)q(0;|F)) = p(0;10,51)q(0;+,|F) (N

Thus, if the current sample 0, is distributed as g(-|F;),
then

PO) = jp(ek+llek>q<ele,->dek ®)

- jp(oklekH)q(ekHIF»dek by (7)

= 4O 1|F) jp(eklekﬂ)dek

= q(041|F)

since [ P(0,]0,,,)d0, = 1. This shows that the next Markov
chain sample 0, will also be distributed as g(:|F;), and so
the latter is indeed the stationary distribution for the gener-
ated Markov chain.

Step 1 can be viewed as a ‘local’ random walk in the
neighborhood of the current state @;, while Step 2 ensures
that the next sample always lie in F; so as to produce the
correct conditioning in the samples. Thus, Step 2 is in prin-
ciple similar to the direct MCS approach in that both are
based on accepting samples that lie in F;. However, the
‘acceptance’ rate for the modified Metropolis algorithm
should be considerably higher than for direct MCS because
the candidate state @ is simulated in the neighborhood of the
current state 0, € F; if the proposal PDFs p; are sufficiently
local and so 0, should have a high probability of lying in F;.
Thus, Markov chain simulation accelerates the efficiency of
exploring the failure region. The higher acceptance rate,
however, is gained at the expense of introducing depen-
dence between successive samples, which inevitably
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reduces the efficiency of the conditional failure probability
estimators, as shown later.

4. Subset simulation procedure

Utilizing the modified Metropolis method, subset simula-
tion proceeds as follows. First, we simulate samples by
direct MCS to compute P, from Eq. (3) as an estimate for
P(F). From these MCS samples, we can readily obtain
some samples distributed as g(:|F), simply as those which
lie in F,. Starting from each of these samples, we can simu-
late Markov chain samples using the modified Metropolis
method. These samples will also be distributed as g(:|F)).
They can be used to estimate P(F,|F,) using an estimator P,
similar to Eq. (3). Observe that the Markov chain samples
which lie in F, are distributed as g(|/F,) and thus they
provide ‘seeds’ for simulating more samples according to
q(:|F») to estimate P(F;|F,). Repeating this process, we can
compute the conditional probabilities of the higher condi-
tional levels until the failure event of interest, F' ( = F,,), has
been reached. At the ith conditional level, 1 =i =m — 1,
let {0,({’) : k=1,...,N} be the Markov chain samples with
distribution g(:|F;), possibly coming from different chains
generated by different seeds. Then

" 1Y ;
P(FialF) = Piy = - > I, (0) ©9)
k=1

Finally, combining Eqs. (2), (3) and (9), the failure prob-
ability estimator is

P; (10)

s

i)F:
1

5. Implementation issues
5.1. Choice of proposal PDF's {p;}

The proposal PDFs { p;} affect the deviation of the candi-
date state from the current state, and control the efficiency of
the Markov chain samples in populating the failure region.
Simulations show that the efficiency of the method is insen-
sitive to the fype of the proposal PDFs, and hence those
which can be operated easily may be used. For example,
the uniform PDF centered at the current sample with width
2l; is a good candidate for p;, and this is used in the exam-
ples in this work. The spread of the proposal PDFs affects
the size of the region covered by the Markov chain samples,
and consequently it controls the efficiency of the method.
Small spread tends to increase the dependence between
successive samples due to their proximity, slowing down
convergence of the estimator and it may also cause
ergodicity problems (see later). Excessively large spread,
however, may reduce the acceptance rate, increasing the
number of repeated Markov chain samples and so slowing

down convergence. The optimal choice of the spread of p; is
therefore a trade-off between acceptance rate and correla-
tion due to proximity. Roughly speaking, the spread of p}k
may be chosen as some fraction of the standard deviation of
the corresponding component 0; as specified by the PDF
q(0), although the optimal choice depends on the particular
type of problem.

5.2. Choice of intermediate failure events

The choice of the intermediate failure events {F;} plays a
key role in the subset simulation procedure. Two issues are
basic to the choice of the intermediate failure events. The
first is the parameterization of the target failure event F
which allows the generation of intermediate failure events
by varying the value of the defined parameter. The second is
the choice of the specific sequence of values of the defined
parameter, which affects the values of the conditional prob-
abilities { P(F;; |F )} and hence the efficiency of the subset
simulation procedure.

Many failure events encountered in engineering applica-
tions can be defined using a combination of union and inter-
section of some component failure events. In particular,
consider a failure event F of the following form:

Ry

F =

-

{Dy(0) > Cy(0)} (11)
1

1k

J

where D;(0) and Cy(0) may be viewed as the demand and
capacity variables of the (j,k) component of the system. The
failure event F'in Eq. (11) can be considered as the failure of
a system with L sub-systems connected in series, where the
Jth sub-system consists of L; components connected in paral-
lel.

In order to apply subset simulation to compute the failure
probability Pk, it is desirable to parameterize F with a single
parameter so that the sequence of intermediate failure
events {F;: i=1,...,m — 1} can be generated by varying
the parameter. This can be accomplished as follows. For the
failure event in Eq. (11), define the ‘critical demand-to-
capacity ratio’ (CDCR) Y as:

Y(0) = max min Dy(®) (12)
=l k=1L Cir(0)
Then it can be easily verified that
F={Y©0) >1)} (13)

and so the sequence of intermediate failure events can be
generated as:

F; ={Y(0) > y;} (14)

where 0 < y; <-.- <y, = lisasequence of (normalized)
intermediate threshold values.



S.-K. Au, J.L. Beck / Probabilistic Engineering Mechanics 16 (2001) 263-277 267

Similarly, consider a failure F' of the form:

I

F:

N

{Dj(8) > C(8)} 5)

1 k=1

J

which can be considered as the failure of a system with L
sub-systems connected in parallel with the jth sub-system
consisting of L; components connected in series. One can
easily verify that the definition

D;(0)

Y(0) = min max (16)
j=1hL

satisfies Eq. (13) and hence the sequence of failure events

can again be generated based on Eq. (14).

The foregoing discussion can be generalized to failure
events consisting of multiple stacks of union and intersec-
tion. Essentially, Y is defined using ‘max’ and ‘min’ in the
same order corresponding to each occurrence of union ( U )
and intersection ( N ) in F, respectively. As another exam-
ple, consider the first excursion failure of the interstory drift
in any one story of a ngstory building beyond a given
threshold level b. Let the interstory drift response {X;(z; 0) :
Jj=1,...,n;} be computed at the n, time instants #,,..., %,
within the duration of interest. Then:

F= {IX;(t:0)| > b} = {Y(8) > 1} (17)
=1 k=1

where
. X (1)

Y(O) o jzr}ll.l.l.’%n,r kgilfl.%il, b (18)

The choice of the sequence of intermediate threshold
values {yi,...,¥,} appearing in the parameterization of
intermediate failure events affects the values of the condi-
tional probabilities and hence the efficiency of the subset
simulation procedure. If the sequence increases slowly, then
the conditional probabilities will be large, and so their esti-
mation requires less samples N. A slow sequence, however,
requires more simulation levels m to reach the target failure
event, increasing the total number of samples Nt = mN in
the whole procedure. Conversely, if the sequence increases
too rapidly that the conditional failure events become rare, it
will require more samples N to obtain an accurate estimate
of the conditional failure probabilities in each simulation
level, which again increases the total number of samples.
It can thus be seen that the choice of the intermediate thresh-
old values is a trade-off between the number of samples
required in each simulation level and the number of simula-
tion levels required to reach the target failure event.

The choice of the intermediate threshold values {y; : i =
1,...,m — 1} deserves a detailed study which is left for
future work. One strategy is to choose the y; a priori, but
then it is difficult to control values of the conditional prob-
abilities P(F;|F;_). Therefore, in this work, the y; are
chosen ‘adaptively’ so that the estimated conditional prob-

abilities are equal to a fixed value p, € (0,1). This is
accomplished by choosing the intermediate threshold level
yi(i=1,...,m — 1) as the (1 — py)Nth largest value (i.e. an
order statistic) among the CDCRs {Y(O,(f_l)) ck=1,...,N}
where the 0,({[71) are the Markov chain samples generated at
the (i — 1)th conditional level for i = 2,...,m — 1, and the
05(0) are the samples from the initial MCS. Here, p, is
assumed to be chosen so that pyN and hence (1 — py)N are
positive integers, although this is not strictly necessary. This
choice of the intermediate threshold levels implies that they
are dependent on the conditional samples and will vary in
different simulation runs. In the examples presented in this
paper, the value p, is chosen to be 0.1, which is found to
yield good efficiency.

6. Statistical properties of the estimators

In this section, we present results on the statistical proper-
ties of the estimators P; and Pg. They are derived assuming
that the Markov chain generated according to the modified
Metropolis method is (theoretically) ergodic, that is, its
stationary distribution is unique and independent of the
initial state of the chain. A discussion on ergodicity will
follow after this section. It is assumed in this section that
the intermediate failure events are chosen a priori. In the
case where the intermediate threshold levels are chosen
dependent on the conditional samples and hence vary in
different simulation runs, as is the case in the examples
presented in this paper, the derived results should hold
approximately, provided such variation is not significant.
Nevertheless, this approximate analysis is justified since
the objective is to have an assessment of the quality of the
probability estimate based on information available in one
simulation run.

6.1. MCS estimator P,

As well-known, the MCS estimator P, in Eq. (3)
computed using the i.i.d. samples {0,..., Oy} converges
almost surely to P; (Strong Law of Large Numbers), is
unbiased, consistent, and Normally distributed as N — oo
(Central Limit Theorem). The coefficient of variation
(c.0.v.) of Py, 8,, defined as the ratio of the standard devia-
tion to the mean of P, is given by:

_ ]_Pl

6.2. Conditional probability estimator P; (2 < i = m)

Since the Markov chains generated at each conditional
level are started with samples (selected from the previous
simulation level) distributed as the corresponding target
conditional PDF, the Markov chain samples used for
computing the conditional probability estimators based on
Eq. (9) are identically distributed as the target conditional
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PDF. Using this result and taking expectation on both side
of Eq. (9) shows that the conditional estimators P; (i =
.,m) are unbiased. On the other hand, the Markov

chain samples are dependent. In spite of this dependence,
all the estimators P;, still have the usual convergence prop-
erties of estimators using independent samples [17]. For
example, P; converges almost surely to P(F;|F;_,) (Strong
Law of Large Numbers), is consistent, and Normally distrib-
uted as N — oo (Central Limit Theorem).

An expression for the c.o.v. for P; is next derived. At the
(i — Dth conditional level, suppose that the number of
Markov chains (each with a possibly different starting
point) is N,, and N/N, samples have been simulated from
each of these chains, so that the total number of Markov
chain samples is N. Although the samples generated by
different chains are in general dependent because the
seeds for each chain may be dependent, it is assumed
for simplicity in analysis that they are uncorrelated
through the indicator function I (-), i.e. E[lg(0)If, 0H] —
P(F|F;_,)* = 0if @ and @' are from different chains. Let 0(’)
be the kth sample in the jth Markov chain at simulation level
i. For 51mp11c1ty in notation, let I(’) =Ig (0("71)) and P; =
P(F|F,_)), i= ,m. Then:

NIN, 2
E[P; — P]—E[ ZZI(‘) ]
=&

. [ NN, 2
S ] I

For the jth chain,

NIN, NIN,
E[Zaﬁ—aq > Ed -
k=1

k=1

P = P))

NIN,
= > Rk—1) Q1)
k=1
where

Ri(k) = E(I) — P, — P) = EUPIY) 1 — P (22)

is the covariance between Ij(') and Ij( 1) > for any [=

.,N/N,, and it is independent of / due to stationarity. It
is also independent of the chain index j since all chains are
probabilistically equivalent. Evaluating the sum in Eq. (21)
with respect to k — [,

NIN, NIN, — 1 N
[Z - ] R(0)+2 Z (N k)R,-(k)

(23)

NIN, — 1
[R(0)+2 Z ( kx")Ri(k)]

Substituting Eq. (23) into (20) yields:

5 NIN, — kN
ELP, — P = [R@Ha y ( ‘j&w]aﬁ
k=1 N
_ RO NI = kN,
P+2 Z ( N)MM]
where
pik) = Ry(/R,(0) 25)

is the correlation coefficient at lag k of the stationary
sequence {Ij(,?: k=1,...,N/N,}. Finally, since I() is a
Bernoulli random Variable R;(0) = Var[l(’)] =P, (1 - P)),
and so the variance of P; is given by

P(1—P)

of = E[P = P! = =1 + ] (26)
where

NIN,
—22( G @7

The c.o.v. §; of P, is thus given by:

1 -
§ = 1+ 28
i PN ( Yi) (28)
The covariance sequence {R;k): i=0,...,N/N, — 1}
can be estimated using the Markov chain samples {0},’:1) :
j=1,...,N.; k=1,...,N/N_.} at the (i — 1)th conditional
level by:

3 1 N, NIN,—k 00 "
Ri(k) = Ri(k) = Njﬁfz 2. i'his | =P 29)
c J: =

from which the correlation sequence {p;(k): k=
1,...,N/N. — 1} and hence the correlation factor vy, in Eq.
(27) can also be estimated. Consequently, the c.o.v. &; for
the conditional probability estimator P; can be estimated by
Eq. (28), where P; is approximated by P; using Eq. (9).

The factor (1 — P;)/P;N in Eq. (28) is the familiar one for
the square of the c.o.v. of the MCS estimators with N inde-
pendent samples. The c.o.v. of P; can thus be considered as
the one in MCS with an effective number of independent
samples N/(1 + vy;). The efficiency of the estimator using
dependent samples of a Markov chain (y; > 0) is therefore
reduced compared to the case when the samples are inde-
pendent (y; = 0), and smaller values of +y; imply higher
efficiency. The value of y; depends on the choice of the
spread of the proposal PDFs (Section 5.1).

6.3. Failure probability estimator Pg

Since P, — P(F,) and P;— P(FJ|F,_,) 2=i=<=m)
almost surely as N — oo, P — P(F) [ ' P(Fi\|F) =
Pr almost surely also. Due to the correlation between the

conditional estimators {i’ i1 13F is biased for every N, but it
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is asymptotically unbiased. This correlation is due to the
fact that the samples used for computing P; which lie in
F; are used to start the Markov chains to compute P, .
The results concerning the mean and c.o.v. of the failure
probability estimator Pp are summarized in the following
two propositions.

Proposition 1. P is biased for every N. The fractional bias
is bounded above by:

|4P2;%}szﬁ@+0WM=OUW) (30)
>j

P is thus asymptotically unbiased and the bias is O(1/N).

Proof. Define Z = (P; — P,)/o;, then it is clear that
E[Z]=0and E[Z’] =1, and P, = P, + 0,Z,.

m

PF_PF ~
o 1
=[Ja+8z)—1

i=1

= i 8Zi+ > S8ZZi+ > SE{ZZZ + - + ﬁ 8.Z;
i=1 i=1

i>j i>j>k

Taking expectation and using E[Z;] = 0,

Pp—P
E[ FF] =D SQEZZ)+ > OQEIZZLZ] +

P i>j i>j>k

quiing

If {Z;} are unc~0rrelated, E(Z,Z)], E|Z; Z; Z,),..., are all
zero, and hence P will be unbiased. In general, however,
{Z:} are correlated, so Py is biased for every N. On the other
hand, since 8, is O(1/+/N) from Eq. (28), the first term in Eq.
(32) is O(1/N) while the remaining sums of higher products
of the ;s are o(1/N). Taking absolute value on both sides of
Eq. (32), using the Cauchy—Schwarz inequality to obtain
|E(2:Z})| = VE[Z?]E[Z}] = | and applying it to the R.H.S.
of Eq. (32) proves the required proposition.

(32)

O

Proposition 2. The c.0.v. § of Pg is bounded above by:

~ 2

P—P &

8 = E[ %] = > 88 +o(l/N)=O(l/N)  (33)
F ij=1

Pr is thus a consistent estimator and its c.0.v. & is

O(1/+/N).

Proof. From Eq. (31)

- 2 m n ’
E[ PFI: Pe ] = EI:Z 82+ > 8827+ +[1] Siz':l
- . =1

i=1 i>j

(34)

= > 88E[ZZ] + o(1/IN)
ij=1

= Z 8;8; + o(1/N) = O(1/N)

ij=1
since E[Z;Z;]] = 1 and & = O(1/+/N).

Note that the c.o.v. 6 in Eq. (33) is defined through the
expected deviation about the target failure probability Pg
instead of E[Pg] so that the effects of bias are accounted
for. The upper bound corresponds to the case when the
conditional probability estimators {P;} are fully correlated.
The actual c.o.v. depends on the correlation between the P;s.
If all the f’,-s were uncorrelated, then

£=3 8 (35)
i=1

Although the P;s are generally correlated, simulations
show that 6> may be well approximated by S, &7. This
will be illustrated in Section 8.

To get an idea of the number of samples required to
achieve a given accuracy in Pp, consider the case
where P(F)) = P(F;41|F;) = po. Assume &; = (1 + y)(1 —
Po)/polN to be the same for all levels. Using Egs. (28) and
(34), and noting that the number of simulation levels to
achieve the target failure probability is m = logPg/logp,
we conclude that to achieve a given c.o.v. of 6 in the esti-
mate Pp, the total number of samples required is roughly

» (14 »d — po)
pollogpo| &
where r = 3 depends on the actual correlation of the P;s.
Thus, for a fixed py and 8, Ny oc [logPg|". Compared with

MCS, where Nt oc 1/PF, this implies a substantial improve-
ment in efficiency when estimating small probabilities.

O

7. Ergodicity of subset simulation procedure

The foregoing discussion assumes that the Markov chain
generated according to the Metropolis method is ergodic,
which guarantees that the conditional probability estimate
based on the Markov chain samples from a single chain will
tend to the corresponding theoretical conditional probability
as N — oo, Theoretically, ergodicity can be always achieved
by choosing a sufficiently large spread in the proposal PDFs
{ p; }. Practically, with a finite number of Markov chain
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samples, ergodicity often becomes an issue of whether
the Markov chain samples used to estimate the condi-
tional probabilities populate sufficiently well the impor-
tant regions of the failure domain, where the main
contributions to the failure probability come from. Intui-
tively, if there are some parts of the failure region of
significant probability content that are not well visited
by the Markov chain samples, the contribution of the
probability mass from such regions will not be reflected
in the estimator, and the conditional probability estimate
will be significantly biased.

For a Markov chain started at a single point, ergodi-
city problems may arise due to the existence of discon-
nected failure regions that are separated by safe regions
whose size is large compared to the spread of the
proposal PDFs {p;‘}. To see this, recall that to go
from the current Markov state to the next, a candidate
state is generated in the neighborhood of the current
state according to the proposal PDFs. To transit from
one failure region to another, the candidate state has to
lie in the second failure region, but this is unlikely to
happen if the spread of the proposal PDF is small
compared to the safe region between the two failure
regions. (Any candidate state that falls in the safe
region is rejected by the Metropolis algorithm.) So,
the safe region prohibits transition of the Markov
chain between disconnected failure regions, resulting
in ergodicity problems. The situation of disconnected
failure regions may arise, for example, in failure
problems for systems with components connected in
series.

By using the samples from multiple Markov chains
with different initial states obtained from previous
conditional levels, as in the present methodology, ergo-
dicity problems due to disconnected failure regions may
be resolved. To see this, first note that the subset simu-
lation procedure begins with MCS, which produces
independent samples distributed in the whole parameter
space. The MCS samples which lie in F; populate the
different regions of F; according to the relative impor-
tance (probability content) of the regions. We can
expect these samples populate F, sufficiently well,
since otherwise the c.o.v. of P, will be large and subse-
quently the c.o.v. of Pr will not be acceptable as the
errors accumulate through subsequent conditional simu-
lation levels. For the next conditional level, we simulate
multiple Markov chains, starting at the conditional MCS
samples distributed among different regions in F;. This
allows us to have seeds in the different regions of F, which
could possibly be disconnected. The Markov chain initiated
in each disconnected region will populate it at least locally,
and so the combined Markov chains correctly account for
the contributions from the regions to the conditional prob-
ability estimate.

In this manner, the contribution from disconnected failure
regions in higher conditional levels can also be accounted

for as the Markov chain samples in these regions propagate
through higher conditional levels. This argument holds, of
course, as long as unimportant failure regions (i.e. those
with negligible contribution) at lower conditional levels
remain unimportant at higher conditional levels, since
otherwise there may not be enough seeds (if any) at lower
conditional levels to develop more Markov chain samples to
account for their importance at higher levels. In conclusion,
even though a Markov chain started from a single state may
have ergodicity problems with disconnected failure regions,
using Markov chain samples from multiple chains, as in the
proposed method, can be expected to achieve practical ergo-
dicity in spite of the existence of disconnected failure
regions.

The foregoing argument suggests that the subset
simulation procedure is likely to produce an ergodic
estimator for failure probability, nevertheless it offers
no guarantee for practical ergodicity. Whether ergodi-
city problems become an issue depends on the particular
application and the choice of the proposal PDFs. It is
worth-noting that similar issues related to ergodicity are
expected to arise in any simulation method which tries
to conclude ‘global’ information from some known
local information, assuming implicitly that the known
local information dominates the problem. For example,
importance sampling using design point(s) implicitly
assumes that the main contribution of failure probability
comes from the neighborhood of the known design
points and there are no other design points of significant
contribution. Thus, in situations such as when the fail-
ure region is highly concave or there are other unknown
design points, the importance-sampling estimator is biased
and has an ergodicity problem. In view of this, one should
appreciate the ergodic property of standard MCS, since it is
a totally global procedure in the sense that it does not accu-
mulate information about the failure region developed from
local states only.

8. Examples

The subset simulation methodology is applied to solving
first-excursion failure probabilities for two examples. In
these examples, the input W(¢) is a Gaussian white noise
process with spectral intensity S. The response of the system
is computed at the discrete time instants {f, = (k — 1)Ar:
k =1,...n}, where the sampling interval is assumed to be
At = 0.02 s and the duration of study is T = 30 s, so that the
number of time instants is n = T/At + 1 = 1501. The
uncertain state vector 0 then consists of the sequence of
i.i.d. standard Gaussian random variables which generate
the white noise input at the discrete time instants, { W(;) =
2mS/AL0,, : k= 1,...,n}, and so the number of uncertain
parameters involved in the problem is n = 1501. The inter-
mediate thresholds {b;} are chosen ‘adaptively’ (see Section
5.2) so that the estimates for the conditional probabilities
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Fig. 1. Failure probability estimate for Example 1.
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{P(F|F;_)} are equal to py = 0.1. The proposal PDFs {p; }
are chosen to be uniform PDFs with width 2, which are
found to give good efficiency. The two examples are
described first, followed by a discussion of the simulation
results.

8.1. Example 1 SDOF linear oscillator

Consider a single degree-of-freedom (DOF) oscillator
with natural frequency w = 7.85 rad/s (1.25 Hz) and damp-
ing ratio { = 2% subjected to white noise excitation:

X(1) + 2LwX (1) + *X(1) = W(F) (37)

The system is assumed to start from rest, that is, X(0) = 0
and X(0) = 0. The spectral intensity for the white noise is
assumed to be S = 1.

Failure is defined as the displacement response exceeding
a threshold level b within the first 30 s, that is,

F=J x| > b} = { max [X@)]| > b} (38)
e

The intermediate failure events {F;} can then be chosen
as:

Fi= {kg}axn IX(10)| > b;} (39)

where by < ... < b,, = b are the intermediate thresholds.

8.2. Example 2 Five-story nonlinear hysteretic shear
building

Consider a five-story shear building with hysteretic
behavior under earthquake motion modeled by a nonsta-
tionary stochastic process. The floor masses are
454%10° kg for all stories. The linear interstory stiff-
ness for the first to fifth stories are 41.1 X 106, 38.5 X
10°, 33.4x10°% 25.6x10° and 15.2 X 10° N/m, respec-
tively. Each story, of height 2.7 m, is modeled by a
Bouc—Wen hysteretic element [18] with parameters a =
B=0.5, n=1 and has strength equal to 12 X 1073 of
the corresponding interstory stiffness. The small-ampli-
tude natural frequency of the structure is 1.25 Hz.
Rayleigh viscous damping is also assumed so that the
first two modes have 5% of critical damping at small
response amplitudes.

The structure is subjected to base excitation d(¢) modeled
by Clough—Penzien filtered white noise W(f) modulated by
an envelope function e(t):

(1) + 2Lpwodt) + whalt) = 24wy, (1) + wha, () (40)

i (1) + 24 wg161(1) + wa () = e(OW () (41)

where wg = 15.7rad/s (25Hz) and oy, = 1.57 rad/s
(0.25 Hz) are the dominant and lower-cutoff frequency of
the spectrum, respectively; {;; = 0.6 and {, = 0.8 are the
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Fig. 2. Failure probability estimate for Example 2.

damping parameters associated with the dominant and
lower-cutoff frequency, respectively. The envelope function
e(?) is assumed to vary quadratically as (t/4)2 for the first 4 s,
then settle at unity for 20s, and finally decay as

exp[—(t — 24)*/2] starting from 7= 24s. The spectral
intensity for the Gaussian white noise W(¢) in Eq. (41) is
assumed to be § = 2.5 X 10 >m?/s’. The nonlinear response
of the structure is computed using the Newmark constant

Failure Probability

0.5 1

Threshold Level b

Fig. 3. Sample average of failure probability estimates from 50 simulation runs for Example 1.
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Fig. 4. Sample average of failure probability estimates from 50 simulation runs for Example 2.

acceleration scheme for a duration of 30 s, which is suffi-
cient to capture the whole earthquake response history. P—A
effects have been taken into account in computing the
nonlinear response.

Failure is defined as the exceedence of the interstory
drift of any one of the stories above a given threshold
level b within the first 30 s. Let X;(#,) denote the interstory
drift response for the jth story at time #, j=1,...,5,

251I T !
o Subset sim?., sample c.o.v.
R o MOS.
Uncorrelated

c.ov. 0

L] S o

Fully correilated

Failure Probability Pg

Fig. 5. Coefficient of variation of failure probabilty estimate for Example 1.
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k =1,...,n. Then the failure event of interest is

F=U U K@l > b} = { max max X1 > b)
=1 k=1 J=L....5 k=1,..., n

(42)

The intermediate failure events {F;} can then be chosen
as:

F = X.(t,)| > b; 43
j={ max_ max [X(1)| > b;} (43)
where {b;} are the intermediate interstory drift thresholds.

8.3. Discussion of results

Figs. 1 and 2 show the failure probability estimates from
three independent simulation runs for Examples 1 and 2,
respectively. In these figures, the failure probability esti-
mates corresponding to the intermediate thresholds are
shown with circles, which are computed using a total
number of samples equal to 500, 1000, 1500 and 2000,
respectively. That is, N = 500 samples have been used to
estimate each of the conditional probabilities. Note that a
single subset simulation run yields failure probability esti-
mates for all threshold levels up to the largest one consid-
ered, not just for the b;. For comparison, the results using
MCS with 100,000 samples are also shown in the figures. It
is seen in both examples that the results by subset simulation
and MCS agree well.

To investigate the bias of the failure probability esti-
mates, the average of failure probability estimates over 50

independent simulation runs is computed. The results are
compared with those obtained by MCS in Figs. 3 and 4
for Examples 1 and 2, respectively. It is seen in both figures
that the average of the failure probability estimates almost
coincide with the MCS results, except in the low probability
region where the error in the MCS estimates is significant.
These results show that the bias due to the correlation
between conditional probability estimates at different levels
is negligible, and the failure probability estimate obtained
by subset simulation is practically unbiased.

To investigate the actual variability of the estimates, as
well as the validity of the upper bound on the c.o.v. in Eq.
(33), the sample c.o.v. of the failure probability estimates
over 50 sets of independent subset simulation runs are
plotted with circles in Figs. 5 and 6 for Example 1 and 2,
respectively. In these figures, the dashed line shows the
upper bound computed using Eq. (33) averaged over the
50 simulation runs. The averaged estimates of the c.o.v.
based on Eq. (35), which assumes the conditional probabil-
ity estimators are uncorrelated, are also plotted with a solid
line in the figure. In both figures, the sample c.o.v. (circles)
lie close to the one assuming uncorrelated conditional prob-
ability estimates (solid line), showing that there is only a
small reduction in efficiency due to the correlation. The
smaller the failure probability and hence higher the simula-
tion level, the more the sample c.o.v. is greater than the one
assuming uncorrelated conditional probability estimates,
since correlation effects accumulate with increasing simula-
tion levels. To compare the efficiency of subset simulation
with MCS, the c.o.v. of a MCS estimate at a particular
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failure probability level using the same total number of
samples as in subset simulation (that is, Np=
500, 1000, 1500,2000 for Pr=10"1,1072,107°,107%,
respectively) is plotted with squares in Figs. 5 and 6 for
Examples 1 and 2, respectively. At a given failure probabil-
ity level Pg, the c.o.v. of failure probability estimates
computed by subset simulation and MCS using the same
total number of samples (and hence approximately the
same computational effort) can be compared. In Figs. 5
and 6, the c.o.v. achieved by subset simulation and MCS
are approximately the same in the large probability region
(e.g., Pr ~ 0.1). In particular, the values of c.o.v. for subset
simulation (circle) and MCS (square) coincide at Pg = 0.1,
since according to the subset simulation procedure with
po = 0.1 this probability estimate is computed based on an
initial MCS. While the c.o.v. for subset simulation grows
approximately in a linear fashion with the logorithm of
decreasing failure probabilities, the c.o.v. for MCS grows
exponentially. Thus, subset simulation becomes more and
more efficient compared with MCS as the target probability
of failure gets smaller.

Note that, from a theoretical point of view, Example 2 is
much more complex than Example 1, since it involves the
first excursion failure of a vector-valued response process,
the system is nonlinear hysteretic, and the excitation is non-
white and nonstationary. In spite of this difference in
complexity, however, the trend of the c.o.v. with decreasing
failure probability in both examples is similar, and so is the
efficiency of subset simulation. Thus, it is expected that
subset simulation can be applied efficiently to first excursion
problems for a wide range of dynamical systems.

9. Conclusions

One of the major obstacles in applying simulation
methods to estimating small failure probabilities is the
need to simulate rare events. Subset simulation resolves
this by breaking the problem into the estimation of a
sequence of larger conditional probabilities. The Metro-
polis method has been modified to efficiently estimate
the conditional probabilities by Markov chain simula-
tion. Theoretical estimates for the coefficient of varia-
tion and results from numerical simulation demonstrate
a substantial improvement in efficiency over standard
MCS.

It should be noted that the choice of the proposal
PDFs is crucial to the success of the subset simulation
methodology. This choice deserves a detailed study
when the method is applied to different types of
problems. Also, better choices of intermediate threshold
levels may be developed to further improve the effi-
ciency of subset simulation. Future research may also
focus on using the conditional samples generated in the
subset simulation procedure for system analysis after
failure occurs.
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Appendix A

This appendix describes the original Metropolis algo-
rithm and explains why it is not applicable to simulating
random vectors with independent components in high
dimensions.

A.l. Metropolis algorithm

Let the proposal PDF, p“(€| 8), be a chosen n-dimen-
sional joint PDF for & centered at  with the symmetry
property p “(£|0) = p *(0|€). Generate a sequence of samples
{0,,0,,...} from a given sample 0; by computing 0, from
0,, k=1,2,..., as follows:

1. Generate a ‘candidate’ state 0: Simulate £ according to
p (€| 0,). Compute the ratio r = q(£)/q(0,). Set @ = &
with probability min{1,r} and set © =0, with the
remaining probability 1 — min{1,r}.

2. Accept/reject @: Check the location of 0. If 6 € F;,
accept it as the next sample, i.e. 0., = 0; otherwise
reject it and take the current sample as the next sample,
ie. 0k+1 = 0k~

Essentially, the original Metropolis algorithm differs
from the modified Metropolis algorithm in the way the
candidate state is generated in Step 1. Note that the Markov
chain samples generated according to the Metropolis algo-
rithm are not all distinct. In particular, there is a non-zero
probability, Py, that the next state in the Markov chain will
be equal to the current state. A large Py implies that the
current and the next state will be highly correlated. This
generally increases the statistical variability of the estimator
P, and reduces the efficiency of the simulation process. It is
thus essential that Py be generally small among the samples
in order to achieve satisfactory efficiency.

It has been found that when the uncertain parameters 0
are independent and the dimension 7 is large, Py is close to
1, rendering the original Metropolis algorithm almost inap-
plicable. To demonstrate this, consider the case when
q(0) = [T~ q(8;), where ¢(6)) is the one-dimensional PDF
for the component 0;, being equal for all components j. As a
common choice, assume that p"(£|0) = [T, p"(§;]6)),
where p*(£;]0;) denotes the one-dimensional PDF for §;
centered at 6; with the symmetric property p*(§;]6;,) =
P (8;]&). Let r =T q(§,)/q(6;) and let u be uniformly
distributed on [0,1], independent of everything else.
According to the Metropolis algorithm, the event {r <1}
and an independent failed Bernoulli trial (with probability
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1 — r) imply that the next state will be equal to the current
state. Thus,

Pr=Pr<l,u>r) (A1)
=Pu>rlr<DHP(r<1)
=E[l —rlr<1]P(r<1)

={1—-E[rr <11}Pr<1)

To assess the quantities appearing in Eq. (A1), first note
that, since {(§;,0;): j=1,...,n} are independently and
identically distributed as p*(;|0,)¢(6;), we have

ox) _ 1 q(&l Y -
Z *4®) (A2

where the convergence is in an almost sure sense due to the
Strong Law of Large Numbers; & and 6 in Eq. (A2) are
jointly distributed as p “(£0)q(8). Since exp(-) is a convex
function, Jensen’s inequality gives:

oleoe g ) = ] oelee ) | = G | 0

Further,
4(®) ] q(®)
[ 42(0) J J O

=Jq(§>jp*<e|§>dedg since  PE0) = p(0]®)

"(€6)q(0)d6dE (A4)

~[awae  since [ olpa0=1

=1
Combining Egs. (A3) and (A4) gives:

q&) ]
El log =
[ q(8)
for some fixed positive constant C. Thus, Eqs. (A2) and (AS)

imply, almost surely as n — oo,

r — exp(—nC) (A6)

-C<0 (AS)

and hence r is exponentially small when the dimension n of
the uncertain parameter space is large. It follows that
E[r[r<1]—0, Pr<1)— 1 and so P — 1 as n — 0.
Thus, it is unlikely that the Metropolis chain will transit to
any other new distinct state as the dimension » is large, in
which case nearly all the Markov chain samples will be
equal.

Although it has not been demonstrated analytically,
numerical simulations show that the above phenomenon
occurs in more general situations; for example, when the
components 0; are not all identically distributed. In contrast,
the modified Metropolis algorithm presented in Section 3 is

applicable in high dimensions. To see this, let r; =

q;(€)/q;(0,), j=1,...,n and let {u; : j=1,...,n} be inde-
pendent and uniformly distributed on [0,1], independent of
everything else. For the modified Metropolis algorithm,
note that the next state is equal to the current state either
when the candidate state generated in Step 1 of the algo-
rithm is equal to the current state or when the candidate state
does not lie in F; and hence is rejected in Step 2. So,

i

P( < lu > rj) + PO & F)
j=1

rj<1,uj>rj}u6ezF,-) (A7)

—_

IA

=

=[1Pt; < 1.u;>r)+ PO &F)
j=1

[ [P > rlr < DPG; < 1) + PO & F)
j=1

=[1¢1 = Elrlr; < 1P < 1) + PO & F))
j=1

Since the factors in the first product are always less than
one, the first term will often tend to zero as n — 0. In this
case, combining Eq. (A7) with the fact that P, = P((; &
F;), it can be concluded that P — P(() & F;) as n— .
This result can be expected intuitively, since when n is
large, it is unlikely that the candidate state is equal to the
current state, as this requires all the » ‘component candidate
states’ {§; : j=1,...,n} be rejected in Step 1 of the algo-
rithm. The event that the next state is equal to the current
state then nearly corresponds to the event where a candidate
state is rejected for not lying in F;. Consequently, when the
dimension n is large, Pr can be expected not to increase
systematically with n, and hence the modified Metropolis
algorithm is applicable even when the dimension is large.
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