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Abstract

An analytical study of the failure region of the first excursion reliability problem for linear dynamical systems subjected to Gaussian white
noise excitation is carried out with a view to constructing a suitable importance sampling density for computing the first excursion failure
probability. Central to the study are ‘elementary failure regions’, which are defined as the failure region in the load space corresponding to the
failure of a particular output response at a particular instant. Each elementary failure region is completely characterized by its design point,
which can be computed readily using impulse response functions of the system. It is noted that the complexity of the first excursion problem
stems from the structure of the union of the elementary failure regions. One important consequence of this union structure is that, in addition
to the global design point, a large number of neighboring design points are important in accounting for the failure probability. Using
information from the analytical study, an importance sampling density is proposed. Numerical examples are presented, which demonstrate
that the efficiency of using the proposed importance sampling density to calculate system reliability is remarkable. © 2001 Elsevier Science

Ltd. All rights reserved.

Keywords: First excursion problem; First passage problem; Linear systems; Importance sampling; Monte Carlo simulation; Reliability

1. Introduction

In the reliability analysis of dynamical systems subjected
to uncertain excitation modeled by stochastic processes, an
important problem is to determine the first-excursion prob-
ability that any one of m output states of interest, Yi(¢), i =
1,...,m exceeds in magnitude some specified threshold level
b(t) within a given time duration 7:

Py =P(F) = P(U (3re(0,71: Y0 > b,m}) (1)

i=1

where F denotes the ‘failure’ event of interest. This problem
is commonly known as the first-excursion (or first passage)
problem, which is among the most difficult problems in the
theory of stochastic dynamics. In spite of the enormous
amount of attention the problem has received, there is no
procedure available for its general solution, especially for
engineering problems of interest where the number of
output states m is large and the failure probability Py is
small.

Pioneered by Rice, early work on the first-excursion
problem was focused on out-crossing theory to give an
analytical approximation [1-8]. While the analytical
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solutions from out-crossing theory offer important insights
into the problem, they are nevertheless approximate and
applicable only for a single output state (i.e. m = 1). A
class of numerical solution methods involves solving the
backward Kolmogorov equation for the reliability function
[9—11]. These numerical solutions are limited in application
to systems of small size since their complexity increases at
least exponentially with the state—space dimension of the
system [12,13].

Simulation methods offer a feasible alternative for the
numerical solution of first-excursion problems with larger
state—space dimensions. In this approach, the stochastic
excitation is specified by a finite number of ‘input random
variables’, Z,, ..., Z,, which can be simulated to generate a
realization of the excitation [14,15]. In terms of the joint
probability density function (PDF) p for the input random
variables, the failure probability can be written as a classical
probability integral:

Py = LP(@ dz = JHF(Z)P(Z) dz = E[1:(Z)] @)

where z = [zq,...,2,] is a state of the input random
variables, which generate the excitation, and IIx(-) is the
indicator function: Ilz(z) =1 if z&€ F and Ilz(z) =0
otherwise. Here, F is interpreted as the failure region in
the n-dimensional space of z. The last expression in
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Eq. (2) views Pp. as the expectation of the indicator function
I1(Z) when Z = [Z,, ..., Z,] is distributed according to p.
This perspective is the basis for Monte Carlo simulation
[16,17], where Pr is estimated as the average of the indi-
cator function II(Z,) among the independent and identi-
cally distributed (i.i.d.) samples {Z,: r=1,...,N}
simulated according to p. As is well known, Monte Carlo
simulation is not computationally efficient for estimating
small P since the number of samples required to achieve
a given accuracy is inversely proportional to Pr when Pr is
small. Essentially, estimating small probabilities requires
information from rare samples, which lead to failure, and
on average it requires many samples before one such failure
sample occurs. In view of this, the importance sampling
method [16,18] has been introduced to compute Pr, which
basically shifts the sampling density towards the failure
region F so as to produce more samples lying in F. The
efficiency of the method relies on a proper choice of the
importance sampling density (ISD), which inevitably
requires some knowledge about the failure region.

For time-invariant or static problems, many schemes for
constructing the ISD, such as those based on design point(s)
[18-22] or pre-samples [23—26] are found to be useful. The
design point(s) or pre-samples are often obtained numeri-
cally by optimization or simulation where the integrand
function I1x(z)p(z) is directly used. In those cases where
the dimension of the uncertain parameter space is not too
large and the failure region is relatively simple to describe,
the information from the design point(s) or pre-samples is
sufficient to characterize the failure region and hence yields
a good importance sampling density. For time-varying
reliability problems such as the first-excursion problem,
the dimension of the uncertain parameter space is often
very large, paralleled by a dramatic increase in complexity
of the failure region. The construction of the ISD using
information numerically extracted from the integrand func-
tion I1(z)p(z) becomes much more difficult.

In view of the aforementioned difficulties in applying
existing simulation techniques to solve the first-excursion
problem, simulation methods have been developed recently
that rely less critically on sampling distributions and that
adapt samples in the failure region in a probabilistically
correct and reasonably efficient manner. Examples are
controlled Monte Carlo simulation [27-30], which is
applicable to deterministic systems subjected to uncertain
excitations, and subset simulation [31,32], which is appli-
cable to systems with both parametric (e.g. structural) as
well as excitation uncertainties. These methods are robust
in application and have shown promise to be suitable for
general dynamical systems with no restrictions on the type
of structural model (linear, nonlinear hysteretic, etc.), state—
space dimension, number of uncertain parameters in the
discrete representation of the excitation, and the probability
level. However, one should realize that the efficiency of a
reliability method depends on how much information about
a given problem the method has utilized; additional

information can often be exploited to accelerate con-
vergence of the failure probability estimate. In essence,
efficiency of a reliability method is often gained at the
expense of generality. The aforementioned simulation
methods are applicable for general systems and assume no
specific structure in the system, suggesting that there may be
room for more efficient methods for a certain class of
systems by utilizing (if possible) information pertinent to
the problem. It is the focus of this work to explore this
possibility for an important class of systems — linear
dynamical systems.

The random vibration aspects of linear dynamical
systems have been studied extensively in the literature
[12,33-35]. In particular, for Gaussian excitations, the
response at multiple time instants are jointly Gaussian,
and their joint probability distribution can be described
based on unit impulse response functions. In the context
of simulation where a discrete approximation of the excita-
tion is used, the failure region corresponding to the failure of
a particular output response at a particular time instant is a
half space defined by a hyperplane in the load space. This
‘elementary failure region’ is completely described by a
local design point, which can be obtained from unit impulse
response functions. This fact has been appreciated in a
recent work by Der Kiureghian [36]. Recognition of this
fact, however, only offers the solution for the failure prob-
ability that a particular response at a particular time
exceeds (in magnitude) a given threshold level. The
information that is still missing for evaluating the first-
excursion probability, which is the probability that any
one of the output response of interest exceeds (in
magnitude) the given threshold level at any time instant
within the duration of study, is rooted in the interaction
of the elementary failure regions corresponding to each of
the output responses at each time instant within the time
duration of interest.

In this paper, we investigate analytically the failure
region of the first-excursion problem for linear systems
under Gaussian white-noise excitation with a view to
constructing an efficient ISD. Based on information from
this study, we propose an ISD, which is shown to be very
efficient compared to conventional ISDs constructed using
information numerically obtained from the integrand func-
tion. Numerical applications are presented to demonstrate
the superior efficiency of the proposed ISD, showing that the
analytical investigation of the failure region is highly
rewarding.

2. Discrete-time linear systems

We first describe the linear systems considered in the
first excursion problem. By linear systems, we mean
that the relationship between the input excitation and
the output response quantity of interest is linear. For
convenience in notation, we will use braced quantities
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to denote the set of quantities inside the brace generated
by running the subscripted index (or indexes) of the
brace from 1 to the superscripted index (or indexes).
For  example, {Zi(k) Y = {Z(), ..., Zi(n)} and
(Z0Yx = 1211, s Zi1), 0 Zy (1)), o, Zy ().

Let W (?),..., Wi(t) and Y,(?),...,Y,,(t) be, respectively,
the [ input (excitation) and m output (response) time
histories of a continuous-time linear system. Without loss
of generality, the outputs are assumed to start from zero
initial conditions at time ¢ = 0. The input—output relation-
ship can be generally written as, for i = 1,...,m :

[ t
N =3 [ byt oW dr 3)
=

where h;(t,7) is the unit impulse response function (or
Green’s function) for the ith output at time 7 due to a unit
impulse applied at the jth input at time 7. As a result of
linearity, the response is a sum of the contributions from
each input W;. Causality has been assumed for the impulse
response functions, namely, hi(t, 1) =0 for + < 7, so that
the integration limit is from O to ¢ instead of O to co. The
representation in Eq. (3) is applicable for any linear system,
including time-varying systems.

In practical applications, the output response is often
solved at discrete time steps by some numerical integration
scheme (e.g. Refs. [37,38]) using the values of the input at
the sampled time instants. Let the sampling be uniform at
time spacing Az = T/(n, — 1) where T is the duration of
study and n, the number of time points so that the sampling
times are #, = (k — 1)A¢t, k = 1,..., n,. The excitation {Wj}f
in discrete-time is assumed to be band-limited Gaussian
white noise:

Wit =4, 40 4)

where S§; is the spectral intensity and {Zj(k)}Jl.:y,'(’ are i.i.d.

Gaussian random variables. In the discrete-time system,
{Zj(k)};:'}(’ are considered as the input random variables,
from which a realization of the excitation can be
generated for simulation purposes. The vector
7 =[Z,(1),....Z(1),....Zi(n,), ..., Z;(n,)] collecting all the
input random variables is thus an n = n, X I-dimensional
standard Gaussian vector with independent components
and so has joint PDF

_ 1 &
p(z) = d(z) £ 2m) " exp(— 5 sz) ®)
i=1

where z = [z;...,z,] is a state of the input random vector
Z. Although the excitation is assumed to be stationary
white noise in Eq. (4), the formulation is applicable for
more general excitation by redefining the system. For
example, if the excitation is a filtered white noise
modulated by an envelope function, then h; will be
equal to the convolution of the impulse response

function of the original system and the filter, multiplied
by the envelope function.

Using the representation of the excitation in Eq. (4), the
discrete-time analog of the input—output relationship in
Eq. (3) can be written in terms of the input random variables

(Z()}"
/ k
Yik) =Y Y gk, $)Z(s)y2mS At 6)
j=1 s=1

where {Y;(k)}!" are the outputs at time step k and gij(k, s) is
the discrete-time unit impulse response of the ith output at
time step k due to a unit impulse Z;(s) = 1 applied at the jth
input at time step s. The relationship between g; and A
depends on the numerical integration scheme used. The
discrete-time impulse response g; can often be obtained
numerically from dynamic analysis using finite element
programs, for example. In particular, for time-invariant
systems, h;(t, 7) = h;(t — 7) and g;(k,s) = g;(k — s+ 1),
so the set of impulse response functions {g;};" correspond-
ing to the jth input excitation can be obtained in one
dynamic analysis. Consequently, it requires / dynamic
analyses to obtain the whole set of impulse response func-
tions {gii}zl}l’ which completely describe the input—output
relationship.

As a fact that will be used later, it is noted that the discrete
impulse response will tend to its continuous-time counter-
part as the sampling interval Az tends to zero:

ik, s) = hy(t, 1) as Ar— 0 (7)

provided that the numerical scheme used to compute the
response is convergent (i.e. consistent and stable) [39]. In
practical applications where the numerical scheme is suffi-
ciently accurate, it may be assumed that the discrete-time
and continuous-time impulse responses are equal at the
sampled time instants.

3. Analysis of the failure region

In terms of the discrete-time system, the failure event F' of
interest is defined as the exceedence of the absolute
response of any one of the outputs beyond a given threshold
level at any time step between 1 and n;:

r={)

i=1 k=1

n

Vol > by = J | Fae ®)
i=1 k=1

where b;(k) is the threshold level for the ith output at time

step k, and Fy is the ‘elementary failure event’ that the

absolute response of the ith output at time step k exceeds
bi(k), that is,

Fy = {[Y:(0)] > bi(k)} ©)

Since F is the union of the elementary failure events
{Fy}ii" a study of the latter may help understand the
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former. We will thus begin by studying the elementary
failure event Fy for given i and k.

3.1. Elementary failure region

The elementary failure event Fj is the union of the
up-crossing and down-crossing events, Fy = {Y(k) >
bi(k)} and F; = {Y;(k) < —b;(k)}, respectively, which are
mutually exclusive. Since Fj; can be written as {—Y;(k) >
b;(k)}, that is, the up-crossing event of —Y; at time step k,
and the two processes Y; and —Y; are probabilistically identi-
cal, it suffices to consider the up-crossing event Fj, . Using
Eq. (6), F; is the semi-infinite region

l k
{Z D gk, $)z(s)y[2mS AL > bi(k)}
j=ls

=1

in the standard n-dimensional Gaussian space of the input
variables z where n = n,l. The failure boundary is given by

n k
OF;; = {z D gk, $)z(s)y[2mS AL = b,-(k)},

j=1 s=1

which is a hyperplane in the n-dimensional space of z. Note
that 9F; imposes a constraint only on zi(s)forall s = k,as a
result of causality.

Design point: The point in Fj; which has the highest
probability density among other points in Fy, called the
design point for Fj; in reliability terminology, is of particu-
lar importance. As the PDF ¢(z) for Z decays radially from
the origin, the design point lies on the failure boundary 9Fj .
The design point maximizes the joint PDF ¢(z) under the
linear constraint

k
D gk, $)z(s)y/2mS; At = by(k).

i
=1 s=1

J

Since ¢(z) is a decreasing function of only the distance of
z from the origin, which is equal to the Euclidean norm of z,
the design point is just the point on dF; with the smallest
Euclidean norm. Let z = {zj ;(s) }jl»:';' € R" be the design
point of the elementary failure event F; , where Zik, j(s) is the
value of the jth input at time step s corresponding to the
design point. Direct constraint minimization yields:

gtj(k’ S)
Th

ka,j(s) = U(k — 5),/2mS;At b;(k) (10)
where U(-) is the unit step function: U(x) = 1 if x = 0 and
zero otherwise, and

1 k
o = Var[y,(lol = > [Z g;i(k, s)z]zwsjm (11)

j=1Ls=1

is the variance of Yy(k), which can be readily obtained by
direct analysis of Eq. (6). As a consequence of causality,
Zix, j(s)=0 for s> k. It is interesting to note that the
variance o of the ith output at time step k is equal to the

sum of all the ‘energy’ of the corresponding impulse
responses from all inputs accumulated up to time step k.
By Eq. (7), g;i(k, s) = hj(t, ;) as At — 0, so we have

! i
2 2
T — E 2mS; | hi(t, 7)° dT asAr— 0
k = jJO j( k )

) . (12)
= variance of output i at time #;, of

continuous-time system

and so o varies ‘continuously’ with k as the sampling is
refined.

The excitation W,TZJ at the jth input that corresponds to the
design point z}; is

* 21TS * gi'(k’ S)
Wi i(ts) = \ thzik,j(s) =Utk = s)—— ! bi(k)
> D gilk.s)y'Ar
r=1 s=1
(13)
and so
hyi(t, L
Wi j(t) — Ul — 1,)bi(k) p t’( 1) as At— 0
Z J i (g, 7)2 dr
r=1 0
(14)

Reliability index and probability content: The Euclidean
norm B, of the design point z, often called the ‘reliability
index’, is given by:
bi(k)

ik

Bix = llzall = (15)
Since the components of z are i.i.d. standard Gaussian,
the probability content of Fj; is given by

P(F3) = D(—|lzzlh) = P(—By) (16)

where @(-) is the cumulative distribution function of the
standard Gaussian distribution. Eq. (16) can be obtained
directly by noting that the ith output has Gaussian
distribution with mean zero and standard deviation o for
a linear system under zero mean Gaussian excitation. Note
that in the present case where the failure boundary is a
hyperplane, the probability content of the failure region
F is completely determined by the reliability index S;.

Conditional distribution of input random variables: The
conditional distribution of the input random vector Z given
that it lies in the elementary failure region Fj is just the
original PDF ¢(z) confined to F; and normalized by the
probability content of Fj :

d@I;: (2)
D(—Bir)
Since the failure boundary 9F; is a hyperplane, by the

rotational symmetry of standard Gaussian vectors with
independent components, the conditional vector Zj

p|Fy) = (17)



S.K. Au, J.L. Beck / Probabilistic Engineering Mechanics 16 (2001) 193-207 197

distributed as p(z|F;,;) can be represented as:

Z) = oujy + Zj; (18)
where
wy, = z/||zil| = 2/ B (19)

is a unit vector in the direction of the design point z};
(perpendicular to the hyperplane dF;); a is a standard
Gaussian random variable conditional on {a > B;]}, that
is, p(a) = d(a)U(a — By)/P(—By); Zx is a standard
Gaussian vector orthogonal to uj (parallel to the hyper-
plane 9F;). It can be easily verified that Zj can be
represented in the following form, which allows for
efficient simulation:

Zi =7 — (Z,uj)uy (20)

where Z is a n-dimensional standard Gaussian vector
with independent components. Substituting Eq. (20) into
Eq. (18), Z;; can be represented as:

Zi =7+ (a—(Zup)uy (21)

The foregoing results are applicable to the down-crossing
event Fy;, except that the design point for Fy; is the negative
of the design point for Fi. Also, a random vector Zj
distributed as p(z|Fy) is identically distributed as —Z;.

For the out-crossing event Fy = Fy U Fy, since F and
Fj, are disjoint, F has two design points corresponding to
those from Fj, and Fj . The probability content of Fy is
simply the sum of those of Fj and Fj, so P(Fy)=
2d(—B;). The input random vector Z; distributed accord-
ing to p(z|Fy) is distributed as Z;;, with probability 1/2 and
as Z; with probability 1/2.

3.2. Interaction of elementary failure regions

The results in the last section indicate that the failure
regions corresponding to the elementary failure events can
be described in a simple way. Their probabilistic properties
are completely determined by their design points, which are
known and can be computed readily from deterministic
dynamic analysis. The complexity of the first excursion
problem, however, lies in the interaction of the elementary
failure events F; in forming the first excursion failure event

m n
r=UUr
i=1 k=1

Two types of interaction between the elementary failure
events can be distinguished. The first one involves interaction
of the first excursion events

U,

among the different outputs i = 1, ..., m. The second type is
the interaction of the elementary failure events at different
failure time steps & for a given output i. The first type depends

on the relationship between the outputs of the system and
would be different for different types of systems and definition
of output states. This type of interaction should be studied for a
particular type of system and will not be pursued here. The
second type of interaction between the failure events at differ-
ent failure time steps k, however, can be studied in general,
since it depends on the relationship of the response at different
instants for a given output, and consequently it is governed by
more general properties such as the continuity of the impulse
response functions of the system. In this study, we will focus
on the second type of interaction. For this purpose, we will
examine the simple case of a single-input single-output time-
invariant linear system with constant threshold level and
excited by stationary white noise, i.e. [ = m = 1 and b;(k) =
b, (k) = b is constant. The failure event will be

F=JF.
k=1

where F), = {|Y (k)| > b} and we have dropped the index on
the output for simplicity in notation.

The set of elementary failure events {F, : k=1,...,n,}
corresponds to the failure of the output response at the
consecutive time steps LI . These elementary failure
events evolve approximately in a continuous fashion
as k varies. Let g(k,s) = gtk — s + 1) and h(t, 7) = h(t — 7)
be, respectively, the impulse response for the discrete- and
continuous-time systems. The design point of F is then
given by z;(s) = Uk — s)/2mSArg(k — s + l)b/af. For
small At, gk —s+ 1)~ h@t, —1t,), so z(s)~ U(t, —
tINV2mwSAth(t, — ts)b/a,f and correspondingly wj(t,) =
V21SIAZi (s) ~ 2wSU(1, — t)h(t, — t,)bla?, whichevolves
smoothly with k when 4 is continuous. This is illustrated in
Fig. 1 where design points Z;] and ziz corresponding to two
different failure times k; and k, are shown. The design points
corresponding to two consecutive failure times will be very
close and their distance tends to zero as Ar— 0. The
distance of the design point from the origin, given by B, =
bloy, decreases gradually with increasing k accordingly as
o increases with k, as shown in Fig. 2. Due to causality,
only the first k components of the design point z; are
nonzero, so as k increases by 1, the design point has one
more nonzero component in a new dimension. Thus, as k
increases, the set of design points {z; };" ‘spiral’ towards the
origin in the n,-dimensional input variable space, which
form a continuous path as Ar — 0. This path ends when k

* *

/\ 7 .
y ky ko

Fig. 1. Neighboring design points.
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/\ 9(k)
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Ok = Z:=1 9(s)? k
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k

Fig. 2. Variation with time of reliability index f;, response standard
deviation o and impulse response g(k).

is largest, that is, k = n,, at the ‘global design point’ z* =
ZZ,’ defined as the design point with the smallest Euclidean
norm, or equivalently, reliability index, among all other
design points. Note that in the general case of multiple-
input multiple-output systems, the failure time of the global
design point is not necessarily equal to 7, for example, when
bi(k) is not constant or the excitation is modulated by an
envelope function.

In the case of a continuous-time single-input—single-
output time-invariant system considered for a duration
of T, the excitation corresponding to the global design
point is a continuous function of time, given by w*(¢) =
2aSU(T — t)l(T — t)b/o-%, which has been obtained by
Drenick as the ‘critical excitation’ for aseismic design
[40]. It was noted as the ‘smallest energy’ (in the sense
of Euclidean norm) excitation, which pushes the
response at time 7 to the threshold level b. Since
w'(t) is the excitation with the smallest energy, which
pushes the response at T to the threshold and it requires
more energy to fail at earlier times, it was concluded that if
the structure is designed so that it will not fail when the
excitation is w"(#), then it will not fail over time interval
[0,T] for any excitation with energy less than that of w*(¢).

4. Development of importance sampling density

The analysis of the failure region F in the last section
provides valuable information for constructing an efficient
ISD to compute the first excursion probability. In particular,
the elementary failure events are completely characterized
by their design point, which can be computed readily by
deterministic dynamic analysis. It is thus natural to
construct the ISD based on the design points to account
for the contributions from the elementary failure regions.
Since there are ngm design points, one is concerned with
how many and which design points to use. Using more
design points may potentially increase the computational
effort and it is often sufficient to use only those that are
‘important’. The importance of an elementary failure
event F;; may be measured by the conditional probability

P(F|F), as the latter gives the plausibility that the failure F
is due to Fy. Since the ratio of the conditional probabilities
of two elementary failure events F and Fj; is

P(Fy|F) _ P(Fy NF)P(F) _ P(Fy)
P(F,|F) ~ P(F,NF)/P(F)  P(F)

(22)

and hence equal to the ratio of their unconditional prob-
abilities, the relative importance of a given design point
z;; may be quantified based on the (unconditional) prob-
ability of the corresponding elementary failure event Fy:

Py = P(Fy) = 2D(—By) (23)

The larger the P;, the more important the design point
zj;. Since the global design point z" is by definition the
one with the smallest B; and hence largest Py, it is
natural to center the ISD at it. However, as noted
before, the design points that are neighbors of the
global design point z* are very close to z* (see Fig. 1).
Their reliability index and hence the probability content
of the corresponding elementary failure region are also
very close to those of z*. As illustrated in Fig. 2, the
reliability index drops dramatically for small k£ and then
settles for moderate values of k& when the impulse
response function has decayed considerably. So it is
only in the case when the duration T is sufficiently
small that the global design point assumes significantly
more importance than all other design points. In the
usual case when the duration 7 is large compared to
the time when the impulse response has decayed suffi-
ciently, the design points in the neighborhood of the
global design point are also important and should there-
fore be included to construct the ISD. Since S settles
quickly with k, the number of design points per each
output state i that should be included is of the order of
the total number of time steps. Thus, as a result of the
interaction between the elementary failure events for
different failure times, a much larger number of design
points in addition to the global design point are impor-
tant and have to be included in constructing the ISD.
For the sake of discussion here, we will assume that all
the nym design points are used for constructing the ISD.

Regarding the choice of the functional form for the ISD,
the fundamental criteria are: (1) the value of the ISD can be
evaluated readily; and (2) there exists a method to efficiently
simulate samples distributed according to the ISD. These
criteria are fundamental since the evaluation of the ISD
and the simulation of its samples have to be carried out
repeatedly during simulation. In constructing an ISD,
which should account for the contributions from the neigh-
borhood of multiple design points, one important observa-
tion is that if one can simulate a sample according to the
individual PDF f;(z), which is designed to account for the
contribution from the design point zj, then one can also
simulate a sample according to a weighted sum of the fs,
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that is,

f@=> Z Wit fir(2),

i=1 k=1

where w;, = 0 and

Z =

This is because a sample distributed as f can be obtained
by first drawing a random ordered pair (/,K) from {(i, k) }m T
with corresponding probabilities {w }7;", and then drawing
a sample from fj(z). For this reason, a conventional choice
for an ISD using the nm design points is a weighted sum of

Gaussian PDFs among the design points [18,19,22], that is,

u[\/]s

=3 S widz 7 (24)

i=1 k=1

The failure probability will then be estimated by

_1 % U(Z)$Z})

n;

N n )
TS wad(Zy — z)

i=1 k=1

(25)

where {Z'}Y are iid. samples simulated from f. For
application to the first excursion problem under study, this
choice is not efficient, however, since for each sample the
evaluation of the quotient

TS S widlZ, — 7

i=1 k=1

involves n,l+n,2ml=0(n,2ml) evaluations of the one-
dimensional Gaussian PDF. This imposes a severe com-
putational burden on the importance sampling procedure
since the number of time steps n, is often large and the
number of outputs m may be large even for medium size
systems.

4.1. Proposed ISD

The drawback of the ISD in Eq. (24) stems from the
fact that the variation of the original PDF ¢(z) with
respect to z is different from that of the individual
PDFs ¢(z — zj;), otherwise the variation will be canceled
out in the importance sampling quotient ¢ (-)/f(-). This draw-
back may be avoided by choosing the ISD as a weighted
sum of PDFs, which follow the variation of ¢(z) and whose
samples can be simulated. At this point, it is noted that the
conditional PDF of the elementary event Fjy, p(z|Fik) =
()5, (2)/P(Fy), has this desirable property, since
I1 £, (z) is constant within F. Also, using the representation
for the conditional sample in Eq. (18), the samples distrib-
uted as p(z|F,~k) can be simulated. It is thus proposed to
construct the ISD as a weighted sum of the conditional

PDFs p(z|Fy) = ()15, (z)/P(Fy), that is,

m n n

f@=> Z wup(2|Fy) = Z Z

i=1 k= i=1 k=

$@)f, (2)
P (26)

where {wy }/7" = 0 and

n

are the chosen weights associated with the elementary
failure event Fj;. The weight w; controls the relative
frequency of samples simulated from p(z|F;), and may be
chosen to reflect the relative importance of the elemen-
tary failure event in contributing to Pr. In this study, the
weights are chosen to be proportional to the probability
content of Fy:

P(F,; P,
Wiy = ( Ik) — lk (27)

Sy 33w,

j=1 s= j=1 s=

Substituting Eq. (27) into Eq. (26), the proposed ISD f is
then given by

f= 20 Z I, (@) (28)
z Zsz i=1 k=

i=1 k=

Using fin Eq. (28) as the importance sampling density, the
first excursion probability Pr can be expressed as

d@)11x(2)
Pp= dz
F 7@ e f(2) dz

AR M:(z)
(53] gl
(i=l k=1 S S, @

f(2) dz

i=1 k=1
. 1
== PF X Ef[ m o n, ] (29)
g, (Z)
i=1 k=1
where
Pp=> =2> > &(—By) (30)
i=1 k=1 i=1 k=1

and the subscript f on the expectation in Eq. (29) indicates
that the expectation is taken with Z distributed according to
f instead of ¢. Also, the fact that I17(Z) =1 for every
sample Z simulated according to f has been used in the
third equality in Eq. (29). The first excursion probability



200 S.K. Au, J.L. Beck / Probabilistic Engineering Mechanics 16 (2001) 193-207

Pr may therefore be estimated by simulation as

1 & 1
Py ~PF_pr—z— 31

1, (Z,)
i=1 k=1

3

where {Z,}" are i.i.d. samples simulated according to f.

4.2. Properties of proposed ISD and failure probability
estimator

Except for the term involving the sum of indicator func-
tions, the variation of the ISD f(z) in Eq. (28) follows
exactly that of the original density ¢(z). Since the weight

zk_Plk/ZZ

j=1 s=1

in Eq. (27) associated with the elementary failure region Fj;
is nonzero if the latter has nonzero probability content Pj,
the support region of f, that is, the region in the space of z
where f(z) > 0, is

=

Fik:F-
1

-

1k

l

Thus, all samples simulated according to f will lie in F,
while at the same time the whole failure region F is covered
by the support region of the ISD and hence the samples
generated from it. The latter implies that the contribution
from all parts of the failure region will be accounted for in
the estimator. Thus, the estimator PF will be an unbiased
estimator of the failure probability Pr. This can be seen
directly by taking the expectation of Py defined in Eq. 31)
and then using Eq (29) to show that Ef [Pr] =

The estimator Py in Eq. (31) is a product of PF and the
average over N samples of the importance sampling quotient
R given by:

1

R(Z) = (32)

ny

> D U@
i=1 k=1

To compute P, only the average of R(Z) needs to be
computed by simulation. For each sample, the evaluation
of R(Z) does not involve the evaluation of probability
densities, in contrast with the case when the ISD in
Eq. (24) is used, which involves O(n,zml) computations of
Gaussian PDFs. Note that the denominator of R,

is just the number of time steps with absolute response lying
above the threshold level and can be obtained easily from
the simulated response by a simple counting procedure.
The coefficient of variation (c.0.v.) é of the failure prob-
ability estimator f’p, defined as the ratio of the standard

deviation to the mean of Pp, is given by:

Var[Pr] A
8 = — = —_—
P, N (33)

where A is the c.o.v. of the importance sampling quotient:

1 D)1 (Z) ]
A= — Var[ _— 34
Pr 1(Z) G
Since
Unm =1/ > =1,
i=1 k=1
we see that
P . .
P <Py =Py (35)
nm

This result imposes bounds on the random quantity Pp,
which depends on the simulated samples {Z,}’,V , and is a
stronger result than bounds on the expectation of f’F, that is,
Prin,m = Pp = Pr. The bounded property of the estimator
Py is a desirable one, since it implies that P will not jump
to a significantly large value during simulation. This
property is not shared by importance sampling estimators
using a conventional choice of ISD, since it is often not
possible to put explicit bounds on the importance sampling
quotient R.

When {Fy}[" are mutually exclusive, Il (Z) =1 for
one and only one (i,k), and HF/_X(Z) =0forj##iors#k.
This is true for every sample Z, and so

m o n

> > Z)=1.

i=1 k=1

This means
PF = PF = PF (36)

and hence the ISD fis equal to the optimal ISD when the
elementary failure events are mutually exclusive. It can be
expected that when the failure events {F; }7;" are close to
being mutually exclusive, the importance sampling quotient
R will be close to unity, which leads to smaller variation in
Py and hence faster convergence to Py.

Finally, we note that

PF:(iZ ,kAz)xE ;

IIf, (Z)At

WNgE

1 k=1

,kAt) [ ] 37
1 k=1 f

i

K

™Ms=
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where

ny

= i > Mg, ZAt
i=1 k=1

is a discrete approximation to the sum of the amount of time
that each output response lies above the threshold when Z is
distributed as f. On the other hand, let

||
||[\/]§

Z (DAt

be the sum of the amount of time that the absolute response
of each output lies above the threshold when Z is distributed
as the original PDF ¢. Then

E[T,) = [Z ZHFk(Z)At] Z Z E[ll (Z)]1A

i=1 k= i=1 k=

n

:f ZPlkAt

i=1 k=1

(38)

and so
Pr = E[T(,,]XEI:iil 39)
Ty

which relates the failure probability Pr to the expected
times T; and T, that the response process spends above
the threshold levels.

5. Summary of proposed importance sampling
procedure

1. Perform dynamic analysis to obtain impulse response

functions {g;(k, s)};"/ " which define the input—output
relationship of the system. For time-invariant systems,
gijk,s) = g;j(k —s+ 1) and only [ (the number of
inputs) dynamic analyses are required.

2. Compute the output response standard deviations
{ox);;" by Eq. (11) the elementary reliability indexes
{ B,k}m " by Eq. (15), the elementary failure probabilities
{Plk}'""’ by Eq. (23), the upper bound P for failure
probability by Eq. (30), and the weights {wa)ii" by
Eq. 27).

3. Compute the failure probability estimate Py by Eq. (31),
where {Z,: r=1,...,N} are i.i.d. samples generated
from the proposed ISD given by Eq. (28).To simulate a
sample Z,.(r = 1,...,N) according to the proposed ISD
given by Eq. (28):

(a) Draw a random ordered pair (1,K) of indexes from
the set {(i,k)};;" with corresponding probabilities
{wie )

(b) Simulate Z as a n-dimensional standard Gaussian

0 5 10 15
Fig. 3. Impulse response function A(?).

vector with independent components, and U, and U, as
uniform variables on [0,1]. Compute

a= & '[U; + (1 - U)DB)] (40)
and set
Z+ (@ — (Z,uj ), ifU, <112
7, = { 1K . 1K 2 @1
—Z — (a — (Z,ujxHujy otherwise

where ujx = zjx/B;x and zj is defined by Eq. (10).

It is worth-noting that once the unit impulse response
functions are computed in Step 1, the response of the struc-
ture can be computed by convoluting them with the
excitation to evaluate each Ilg (Z,) (r=1,...,N). This
can be done efficiently using the FFT algorithm and its
inverse. This approach may save computational effort,
since the setup of structural matrices in the finite element
model, for example, can be avoided in the repeated compu-
tations of structural response for different excitations during
simulation.

6. Numerical applications
6.1. Example 1: SDOF oscillator

Consider a single-degree-of-freedom (SDOF) oscillator
with natural frequency w = 2w rad/s (i.e. 1 Hz) and damp-
ing ratio { = 2% subjected to white noise excitation:

V(1) + 2LwY (1) + °Y () = W() (42)

0 5 1b 15

Fig. 4. Standard deviation of response, o (7).
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Fig. 5. Weight w(r).

where W(r) is a Gaussian white noise process with spectral
intensity S = 1. The sampling interval is assumed to be
At =0.05s and the duration of study is 7 = 15s. The
total number of time points, and hence the number of
input random variables is thus n, = T/At + 1 = 15/0.05 +
1 = 301. Failure is defined as the absolute displacement
response exceeding a threshold level b, that is, F =
{|Y(t)| > b} where t, = (k — 1)At, k =1,...,n,. The
impulse response function A(f) of the system is given by

—{wt

h(t) = sin wyt (43)

Wq
where wy = wy/1 — & is the damped natural frequency.
Fig. 3 shows the variation of A(f) within the duration of
study. The variance of Y(¢) is given by integrating the square
of h(7) up to time #:

o) = 277][ h(r)? dr (44)
0

The standard deviation o () is shown in Fig. 4. Note that
o(t) is increasing with ¢ and its wavy character is due to the
oscillatory behavior of the impulse response function A(%).

The first excursion probability Py for a given threshold
level b is computed by importance sampling using the
following three choices of ISD: (1) ISD centered at the
global design point with unit covariance matrix; (2) ISD
centered among all the n, design points with unit covariance
matrix, as given in Eq. (24); (3) the proposed ISD in
Eq. (28). The weights used in Eq. (24) for Choice (2) are
given by Eq. (27). Fig. 5 shows the variation of the weights
with time ¢t for b =3,4,5X o(T), where o(T) is the
standard deviation of the response at time 7 = 15 s, being
the largest within the duration of study. Note that, although

Table 1
The c.o.v. A of importance sampling quotients for failure probability

©

10
h
= Znem el s ——p]
Q R -
,g N
S10f e
i Oncmnmncn
[«5} v hd
5
I
510 E ......... o b — 3 o T
o b=40(T
0_5' © b=50(T
4 . A
0 100 200 300 400 500

No. of samples N

Fig. 6. Failure probability estimates for different threshold levels » and
number of samples N. Choice (1): dotted lines; Choice (2): dashed lines;
Choice (3): solid lines; MCS with 10° samples: asterisks.

Figs. 3-5 plot the quantities h(f), o(f) and w(f) as a
continuous function of time ¢, only the values at the discrete
time instants 7, = (k — 1)At, k = 1, ..., n,, are evaluated and
used in the actual computations.

The failure probability estimates for the three threshold
levels are shown in Fig. 6 for different sample sizes N. The
results computed with ISD using Choices (1)—(3) are shown
with dotted, dashed and solid lines, respectively. For
comparison, the results computed by standard Monte
Carlo simulation (MCS) with 10° samples are shown as
asterisks in the figure.

From Fig. 6, it can be seen that results computed by
Choice (1) are practically biased within the number of
samples considered, showing that it is not suitable for
computing the first excursion probability. In particular, the
failure probability estimates corresponding to Choice (1) are
smaller than the exact failure probabilities by orders of
magnitude. Note that this is not due to most of the samples
generated by the ISD of Choice (1) lying in the safe region.
In fact, the percentages of the 500 samples generated by the
ISD of Choice (1) that lie in the failure region are 63, 57 and
53%, showing that more than half of the samples lie in the
failure region. Rather, the practical bias observed in Choice
(1) is due to the fact that the importance sampling quotient
in Choice (1) takes on values, which are orders of magnitude
smaller than the probability of failure for most of the
generated samples. The sudden ‘jumps’ in the simulation

blo(T) Pr A

Choice (1) Choice (2) Choice (3) (Proposed) MCS
3 6.01x1072 28.9 1.80 1.24 3.95
4 1.79% 1073 63.1 3.19 0.93 23.6
5 1.97x107° 69.3 4.36 0.80 226
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Table 2
Number of samples N to achieve a c.0.v. of § = 30% in Pp

blo(T) Pr N; (6 =30%)
Choice (1) Choice (2) Choice (3) MCS
(Proposed)
3 6.01x 1072 9302 37 18 174
4 1.79% 1073 44,233 114 10 6206
5 1.97%x107° 53,400 212 8 565,558

history of failure probability estimates of Choice (1) corre-
spond to those rare occasions where the importance
sampling quotient is much larger than the rest of the
samples.

The results computed using Choices (2) and (3) have
similar variability, although the latter has even smaller
variability. The results for both Choices (2) and (3)
converge to the target failure probability when N increases.
To assess quantitatively the variability of the estimates and
hence the efficiency of the importance sampling procedure
using the different choices, the c.0.v. (coefficient of varia-
tion) of the importance sampling quotients defined by
Eq. (34) for the three choices are estimated from the 500
simulated samples. Note that the c.o.v. § of the failure
probability estimate using N samples is given by Eq. (33).
For Choice (1), the values of A are estimated using 100,000
samples, since the estimates for failure probability and
hence c.o.v. using 500 samples are biased. The results are
shown in Table 1. Using the c.o.v. for the importance
sampling quotient, the number of samples N;s required to
achieve a c.o.v. of & in the failure probability estimate,
given by N5 = A%*/8% is also computed. For the results
shown in Table 2, 8 = 30% has been used, which represents
a moderate level of accuracy in the failure probability
estimate.

Table 1 shows that the c.0.v.s A for Choice (1) are much
larger than those of Choices (2) and (3). Also, for higher
values of P, even standard MCS is more efficient than using
Choice (1). The corresponding number of samples N; in
Table 2 for Choice (1) are larger by orders of magnitude
than those for Choices (2) and (3). The c.o.v.s for Choice (3)

: G3
381 m 1 C3 C6 G3 C6 C3
3.81m C3 C6 a2 C6 C3

3.81m C2 C5 qs |C5 C2

3.81m C2 G5 @1 |[C5 C2

381m | Cl C4| @ |c4 c1

5.49 m C1 C4 C4 C1

7777 7777 7777

7777
., 3@732m=22m
1 1

Fig. 7. Moment-resisting frame structure.

are smaller than those for Choice (2). The number of
samples for Choice (3) required to achieve a c.o.v. of 6 =
30% is remarkably small (<20) compared with those
commonly reported in the importance sampling literature,
implying that the proposed ISD leads to a very efficient
importance sampling strategy. This superior efficiency is
made possible through the use of analytical results on the
first excursion problem specifically for linear systems.

6.2. Example 2: seismic response of moment-resisting steel
frame

Consider a six-story moment-resisting steel frame as
shown in Fig. 7 with member sections given in Table 3.
For each floor, the same section is used for all girders.
The structure is modeled as a two-dimensional linear
frame with beam elements connecting the joints of the
frame. Masses are lumped at the nodes of the frame,
which include the contributions from the dead load of the
floors and the frame members. They are tabulated in Table
4. The natural frequencies of the first two modes are
computed to be 0.552 and 1.56 Hz, respectively. Rayleigh
damping is assumed so that the first two modes have 5% of
critical damping.

The structure is subjected to a stochastic ground
acceleration d(f) modeled by filtered white noise with a

Table 3
Sections (AISC) for frame members

Story Exterior column Interior column Girder
1,2 Cl: W14 X 159 C4: W27 x 161 Gl: W24 x 94
3,4 C2: W14 X 132 C5: W27 x 114 G2: W24 x76
5,6 C3: W14 x99 C6: W24 X 84 G3: W24 x 55
Table 4
Point masses
Floor Exterior column Interior column
(X 10% kg) (% 10° kg)
2 60.4 81.0
3 53.3 78.1
4 51.9 76.0
5 51.7 75.8
6 50.1 73.5
Roof 44.6 63.1
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Clough—Penzien spectrum and modulated by an envelope
function e(7):

() + 2L wpa(t) + wha(h) = 24, w,d, (1) + wya,(t) (45)

(1) + 2 0a (1) + whay (1) = (W) (46)
where w, = 15.7rad/s (25Hz) and wy, = 17.5rad/s
(0.25 Hz) are the dominant and lower-cutoff frequency of
the spectrum; {; = 0.6 and {, = 0.8 are the damping para-
meters associated with the dominant and lower-cutoff
frequency, respectively. The envelope function e(f) is
assumed to vary quadratically as (#/4)® for the first 4s,
then settle at unity for 10 s, and finally decay as exp[—(t —
14)2/2] starting from ¢t = 14 s. InEq. (46), W(¢) is the Gaussian
white noise with spectral intensity S = 1 X 1073 m?%/s°.

0
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Fig. 9. Failure probability estimates for peak interstory drift ratio for
different threshold levels b and number of samples N. MCS estimates
with 10,000 samples are shown with circles.

The input—output relationship between the input W(r) and
the output Y«(¥) is
t
1) = | e = Deown dr )
0
where h(7) is the impulse response of the augmented
system, which include the dynamics of the frame structure
and the soil layers represented by the Clough—Penzien
spectrum. The variance of Yi(¢) is given by
1
ol (t) = ZwSJ hi(t — 1’e(7)* dT (48)
0
Note that both the response Y(#) and its variance o-,-z(t) can
be obtained by convolution. A duration of 7 = 30 s and a
time interval of Az = 0.02s are used in computing the
response of the structure, leading to n, = T/Ar+ 1=

30/0.02 + 1 = 1501 input random variables in the discrete
approximation for W(z).

6.3. Peak interstory drift ratio

Consider the failure probability that the peak interstory
drift ratio over all stories of the structure exceeds a threshold
level b. The outputs {Y; : i = 1,...,m} consist of the inters-
tory drift ratio of all columns connecting two consecutive
floors. There are thus m = 24 outputs, which can be

Table 5
The c.0.v. A of proposed importance sampling quotient for failure prob-
ability for peak interstory drift ratio

b (%) Br (N = 200) A Ns (8 =30%)
0.5 6.41%x1072 1.34 20
0.75 279%107* 1.15 15
1 1.23% 1077 1.09 13
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Fig. 10. Impulse response /,(f), standard deviation o(f) and elementary failure probability P() for floor accelerations.

expressed as a linear transformation of the state variables of
the structure. The impulse response for the interstory drift
ratios of the exterior columns at every floor are shown in the
first column of Fig. 8. These are obtained from one dynamic
analysis of the structure. Although not shown in the figure, it
is noted that the impulse responses for the interior columns
are close to those for the corresponding exterior columns.
The standard deviations o;(f) (i=1,...,6) computed
based on Eq. (48) by numerical convolution are shown in
the second column in Fig. 8. The elementary failure prob-
ability for the ith interstory drift ratio, P;(f) = P(|y,(t)] >
b) = 2d(—blo;(t)), are also computed with b = 1% and
shown in the third column in Fig. 8. Although the quantities
in Fig. 8 are shown as a continuous function of ¢, only the
values at the discrete time instants #, = (k — 1)Az, k=
1,...,n,, are evaluated in the actual computations. It is

10
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Fig. 11. Failure probability estimates for peak floor acceleration for differ-
ent threshold levels b and number of samples N. MCS estimates with 10,000
samples are shown with circles.

seen in Fig. 8§ that the variation of the response standard
deviation o«(r) with ¢ follows approximately that of the
envelope function e(?). In particular, the maximum standard
deviation for each response over the duration of study
occurs at t = 14 s, which coincides with the time when
the envelope function starts to decay. The variation of the
elementary failure probabilities with time is sharper than
that of the corresponding response standard deviations.
According to Eq. (38), the area under the curve of each
P(¢) gives the expected time that the absolute response for
the ith story spends above the threshold level. The ratio of
the area under the elementary failure probability P,(f)
between different stories i gives an idea of the relative
importance of the responses in contributing to the first
excursion failure. Thus, from Fig. 8, it can be expected
that the second to fifth stories should give the main con-
tribution to the failure probability.

The failure probability estimates P for the threshold
levels b = 0.5, 0.75 and 1% are shown in Fig. 9 for different
number of samples N. The estimates by standard Monte

Table 6
Failure probability estimates for peak interstory drift ratio with N = 20
samples

b (%) Pr (N = 200) Run Pr (N = 20)
0.5 6.41x 1072 1 4.54% 1072
2 429%107?

3 7.28% 1072

0.75 279% 1074 1 1.77%x107*
2 3.14x107*

3 255x107*

1.23%x 1077 1 1.21x1077

2 1.43%x1077

3 1.22% 1077
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Table 7
The c.o.v. A of proposed importance sampling quotient for failure prob-
ability for peak floor acceleration

b (g) Pr A Ns(8 =30%)
0.2 3.87x 1072 1.05 12
0.3 224%107° 0.70 5
0.4 6.36x 1071 0.83 8

Carlo simulation with 10,000 samples are also computed
and shown with circles in the figure. Note that the Monte
Carlo estimate for b = 1% is not shown in the figure since
the sample size is not large enough to provide a sufficiently
accurate estimate for the failure probability corresponding
to this threshold level. From Fig. 9, it can be seen that the
failure probability estimates computed using the proposed
ISD converge quickly to the target probability of failure.

To investigate quantitatively the variability of the failure
probability estimates, the c.o.v. A of the importance
sampling quotient is computed using 200 samples and
shown in Table 5. The number of samples required to
achieve a c.o.v. of 6 = 30% in the failure probability esti-
mate are shown in the last column of the table. In general,
the c.0.v. A for the importance sampling quotient is quite
small, and consequently only a small number of samples N;
is required to achieve a c.0.v. of 6 =30% in the failure
probability estimates. The values of N5 show that a suffi-
ciently good failure probability estimate can be obtained
with a small sample size of, say, N = 20. To demonstrate
this, independent simulation runs are carried out with N =
20 samples to compute the failure probability estimates. The
results are shown in Table 6, which demonstrate that the
variability of the failure probability estimates among
independent runs is indeed small.

6.4. Peak floor acceleration

Finally, consider the failure probability that the (absolute
horizontal) peak floor acceleration over all stories of the
structure exceeds (in magnitude) a threshold level b (in
%g). As the horizontal displacement along the beam

Table 8
Failure probability estimates for peak floor acceleration with N = 20
samples

b () P (N = 200) Run Py (N = 20)
0.2 3.87x 1072 1 231%x1072
2 434%1072
3 3.10x 1072
0.3 224%107° 1 243%107°
2 2.76%107°
3 3.04x107°
0.4 6.36x 1071 1 6.34% 107"
2 522x 1071
3 5.48x 10710

elements for the girders are linearly interpolated, this prob-
ability is equal to the failure probability that the horizontal
absolute acceleration at any one of the nodes of the frame
exceeds the threshold level b. There are thus m = 24
outputs, corresponding to the absolute horizontal accelera-
tion at the 24 nodes of the frame. The results are shown in
Figs. 10 and 11, Tables 7 and 8, in analogy with the results
for the peak interstory drift in Figs. 8 and 9, Tables 5 and 6,
respectively. Similar to the case of peak interstory drifts,
these results show that fast convergence is achieved in the
failure probability estimates. In particular, Table 7 shows
that less than 20 samples are needed to achieve a c.o.v. of
0 =30% in all the failure probability estimates, which is
verified in Table 8.

7. Conclusions

The complexity of the first-excursion problem stems from
the structure of the union of the elementary failure regions
in the high-dimensional excitation space, although these
regions are simple to describe. One important consequence
of such union structure is that, in addition to the global
design point, a large number of neighboring design
points are important in accounting for the failure
probability, and hence have to be considered in constructing
an ISD (importance sampling density). A new ISD is
proposed, which takes into account the contributions of all
the elementary failure regions. It is built upon the following
three important observations:

1. Appreciation of the fact that, for time linear invariant
systems, the design points corresponding to failure at
different time steps can be obtained simply from the
unit impulse response function.

2. Appreciation of the fact that, instead of only the global
design point, a large number of design points are
important in contributing to the failure probability.

3. The novel concept of constructing the ISD as a weighted
sum of conditional PDFs rather than just Gaussian PDFs
centered at the design points (as is commonly done) so
that the original PDF is cancelled out in the importance
sampling quotient. This makes the method extremely
efficient, regardless of the size of the problem in terms
of the number of time steps, the number of inputs and the
number of outputs.

Whereas conventional choices for constructing the ISD
using the design points are found to be inefficient, numerical
examples show that the proposed ISD leads to very fast
convergence in the first-excursion failure probability
estimates. Examples have shown that not more than 20
samples are required to achieve a c.o0.v. of 30% in the failure
probability estimates over a range of several orders of
magnitude in the failure probabilities. This efficiency is
remarkable and is unprecedented in the literature to the
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best of the authors’ knowledge. It is achieved because vital
information on the first-excursion problem that is gained
from an analytical study of the failure region for linear
systems is utilized in constructing the proposed ISD.

In this study, the stochastic excitation has been assumed
to be Gaussian white noise and it is discretized in the
time-domain. For stochastic excitation with a spectral
representation, an analytical study of the failure region
and the development of a suitable ISD based on a similar
approach to that used in this paper is in progress.
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