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Generalized Trajectory Methods for Finding
Multiple Extrema and Roots of Functions

C. M. YanG' anp J. L. BEck?

Communicated by F. E. Udwadia

Abstract. Two generalized trajectory methods are combined to provide
a novel and powerful numerical procedure for systematically finding
multiple local extrema of a multivariable objective function. This pro-
cedure can form part of a strategy for global optimization in which the
greatest local maximum and least local minimum in the interior of a
specified region are compared to the largest and smallest values of the
objective function on the boundary of the region. The first trajectory
method, a homotopy scheme, provides a globally convergent algorithm
to find a stationary point of the objective function. The second trajectory
method, a relaxation scheme, starts at one stationary point and systemat-
ically connects other stationary points in the specified region by a net-
work of trjectories. It is noted that both generalized trajectory methods
actually solve the stationarity conditions, and so they can also be used
to find multiple roots of a set of nonlinear equations.

Key Words. Homotopy, relaxation, trajectory tracking, global optimi-
zation, roots, nonlinear equations.

1. Introduction

Many problems in engineering and science can be formulated as global
optimization problems. In some applications, not only the global extrema
but also all the local extrema are significant and need to be found. In any
case, determination of these local extrema can be one step in a procedure
to find the global extrema. Since the objective functions in many practical
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applications are not convex, they may have multipie local and global extre-
mal points in the region of interest. Finding all these multiple extrema is a
challenging computational problem. Also, in contrast to local extrema,
which can be characterized by the local behavior of the objective function,
no practical and general criteria exist to determine whether a global extre-
mum has been found.

A large number of publications have appeared during the past three
decades on the subject of global optimization, presenting a variety of deter-
ministic and stochastic methods (Refs. 1-2). A common feature of these
global optimization methods is that some sort of global search strategy is
incorporated into the algorithms. These strategies are essential due to the
lack of local criteria for ascertaining global extrema, which may be located
anywhere in the region of interest, and so they can be found only by system-
atically searching the region. The challenge is to perform this search in an
efficient manner, since it is not computationally feasible to search exhaust-
ively over a fine mesh unless the dimension of the parameter space is small.
Most proposed global optimization methods use heuristics to improve the
efficiency of the search and do not offer an absolute guarantee of finding
the global extrema.

In this study, two generalized trajectory methods are combined to pro-
vide a novel and powerful approach for computation of multiple local
extrema of an objective function. The first trajectory method is a homotopy
one which provides a globally convergent algorithm to find a stationary
point of the ojective function. The second trajectory method, called a relaxa-
tion scheme, starts at one stationary point and systematically connects other
stationary points in a region by a network of trajectories. Both the homotopy
and relaxation schemes actually solve the stationarity conditions, and so
they can also be used to find multiple roots of a set of nonlinear equations.

2. Generalized Trajectory Methods

2.1. General Formulation and Assumptions. Let the objective function
J(x) be a sufficiently smooth scalar function of n variables, with xe # = R",
where 4 is an open region. We are interested in finding the points in #
which give the greatest local maximum (GLM) and the least local minimum
(LLM) of f(x), if any. In many applications, prior knowledge of f(x) and
the choice of # can be used to conclude that the largest or smallest value
of f(x) on the closure 4 of # is achieved in 4. In this case, the GLM or
LLM of f(x) in 4 gives the global maximum or minimum of f(x) over %.
In other cases, to find the global maximum over 4, one strategy is to take
the maximum of the GLM in 4 and the largest value of f(x) on the boundary
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of #. A similar strategy to find the global minimum over % employs the
LLM in 4. For these reasons, it is desirable to develop algorithms which
compute the GLM and LLM of f(x) in 4. Clearly, these points can be
found if all the stationary points of f(x) in & are located. It is assumed that
the number of stationary points is finite so that they can each be checked
for a local extremum.

It is well known that the stationary points of f(x) satisfy the following
n stationarity conditions:

Vf(x)=0. (1)

Therefore, the problem of finding all the stationary points of f(x) is reduced
to the problem of finding all the roots of the set of nonlinear equations in
(1). The basic idea of the generalized trajectory method is to embed (1) in
a new set of equations,

g(x, 1)=0, A€ER, )

where g(x, 1) e R" and all the roots of (1) also satisfy (2) for some particular
value of A, say A=1. Under some generic regularity assumptions on g,
the solutions of (2) are one-dimensional manifolds or trajectories in R” "',
Therefore, the roots of (1) can be found by tracking the trajectories defined
by (2).

Two special generalized trajectory methods can be combined for finding
the stationary points of f(x). If stationary points of f(x) exist in 4, but they
are difficult to find using local optimization methods due to the lack of
suitable initial guesses, a homotopy scheme can be used to find at least one
stationary point. To find other stationary points, a relaxation scheme starting
at a known stationary point can then be applied.

2.2. Homotopy Schemes. Several different names, such as embedding,
invariant embedding, and parameter continuation, have been associated with
homotopy schemes. The essence of a homotopy scheme is to smoothly trans-
form a known solution to a simple problem into a solution of a target
problem which is difficult to solve by embedding the simple and target
problems in a more general problem. The function which describes the transi-
tion between the two problems is called a homotopy, and the stage of trans-
formation is represented by a homotopy parameter. The simple solution
evolves into the target solution by continuously varying the homotopy
parameter (Refs. 3-4).

The major feature of homotopy schemes is global convergence, in the
sense that they usually have a greatly expanded domain of convergence, so
that it is possible to have solutions of the simple and target problems far
apart and still have convergence. This property makes homotopy schemes
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drastically different from local iterative methods which need good initial
guesses in order to converge. Therefore, homotopy schemes are particularly
suitable for highly nonlinear problems for which good initial solution esti-
mates are difficult to obtain.

Two main canonical homotopy schemes, Newton and fixed-point, have
been proposed and studied in the literature, but only the latter is discussed
here. The fixed-point homotopy is given by defining g in (2) as

gr(x, A)=(1—)Mp(x—xp) + AVf(x) =0, 3)

where x, is a fixed arbitrary point in 4 and M is a nonsingular »n X n matrix.
When A =0, the simple problem

gr(x,0)=Mp(x—~x0)=0

has only one solution x,, while (3) represents the original problem given in
(1) when A=1.

To apply this homotopy scheme, an aribitrary point xo in 4 is chosen
and the homotopy trajectory defined by (3) is traced by allowing A to change
from 0. Whenever the homotopy trajectory reaches A=1, a stationary point
of f(x) is found. It is noted that the homotopy trajectory may cross A=1
several times. Therefore, it is sometimes possible to locate more than one
stationary point by tracking a single homotopy trajectory. On the other
hand, if there are no stationary points in 4, the homotopy trajectory will
typically reach the boundary of # without crossing A=1.

2.3. Relaxation Schemes. Suppose that at least one stationary point
has been found by using homotopy schemes. To determine other stationary
points in 4, if any, another type of generalized trajectory methods, which
we call relaxation schemes, can be used. The basic idea of relaxation schemes
is to have a special form of (2) which is as simple as possible and needs
only the information of one stationary point. One simple relaxation scheme
is given by defining g in (2) as

gr(x, A)=Vf(x)—(1-2A)o=0, 4

where v is a given normalized constant vector in R". It is apparent that all
the stationary points of f(x) satisfy gr(x, 1)=0. To apply the relaxation
scheme, an aribtrary v is chosen and the relaxation trajectory defined by (4)
is traced from the known stationary point by allowing A to change from 1.
Whenever the relaxation trajectory crosses A =1, another stationary point
is found. Like homotopy trajectories, it is possible to locate more than one
stationary point by tracking a single relaxation trajectory.

To increase the chance of finding all the stationary points, multiple
relaxation schemes can be applied in a systematic way to set up a network



JOTA: VOL. 97, NO. 1, APRIL 1998 215

of relaxation trajectories which hopefully connects all the stationary points,
This proposed approach is systematic as opposed to other ad-hoc methods
such as repeated application of a homotopy scheme with randomly selected
Xo. One possibility is to use the standard orthonormal basis vectors e,
e,...,ore,as v. When v is equal to ¢;, the interpretation of (4) is that,
in order to find other stationary points, the ith constraint in (1) is relaxed
while all the other constraints remain enforced. The vector v can be systemat-
ically set to each basis vector in turn in order to relax a different constraint
each time. In this case, n relaxation trajectories are tracked from each station-
ary point that is found. This is the strategy followed in the numerical
examples presented later. However, choices of v other than the standard
basis vectors could be explored and in some cases may find stationary points
not found when v is equal to e;.

In fact, we have constructed an optimization problem in R> with multi-
ple extrema and with a high degree of geometrical symmetry, for which the
choices v=e; miss a centrally located extremum. Setting v to any other
choice of orthonormal basis vectors for R?, however, leads to a network of
relaxation trajectories which connects all the stationary points. It is not
known whether it is possible to construct a problem in which the same
extrema are missed for all choices of v,

2.4. Trajectory Tracking Algorithm. Both homotopy and relaxation
trajectories need to be tracked by numerical algorithms, and therefore only
a finite number of discrete points on a trajectory can be computed. To step
from one point on a trajectory to an adjacent point on the same trajectory,
some iterative scheme is required. The basic idea is to generate an initial
guess for that adjacent point and then use some local iteration method to
converge to the trajectory point. Different algorithms for trajectory tracking
have been proposed (Refs. 4-7). These algorithms need to compute either
the tangent vector of the trajectory or the Hessian matrix of the objective
function, both of which are numerically expensive for complicated problems.
To avoid such computations, a new and efficient trajectory tracking algo-
rithm is presented and illustrated in Fig. 1.

Let p=[x", A]", so (2) can be rewritten as

g(p)=0, peBxR. (5)

Suppose that I is one component of the solution trajectory of (5) and p; is
the current point on I". To find an adjacent point p;+, on T, p° is used as
an initial approximation. To render p°, the secant direction which is deter-
mined by p;— and p; is used. Let u be the unit vector in that secant direction;
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Fig. 1. Tllustration of the trajectory tracking algorithm.

then, p° is chosen so that
pO =p,' + 6”,

where & is a given small number which controls the closeness of p°.

Since p;+; is on I', it must satisfy (5). However, some additional con-
straint needs to be imposed in order to precisely determine the position of
Di+1. In the proposed algorithm, p;.; is chosen to be a root of the following
set of equations:

gp)=0, u-(p—p)—-6=0. (6)

The second equation in (6) imposes a constraint on p;+ such that the projec-
tion of vector p;,,—p; in the u direction is equal to §. In other words, this
constraint prescribes how far the step should be along I'.

It is noted that (6) is just a set of n+1 nonlinear equations with n+1
variables. Given an initial guess p° (6) can be solved by using any local
numerical iteration method for finding roots of a set of equations. If § is
small enough, the root p;.; will not be far away from the initial guess p°
and convergence will occur. In the proposed algorithm, (6) is first trans-
formed into a nonlinear least-squares optimization problem, which is then
solved by either the Gauss-Newton or Levenberg-Marquardt method. These
numerical algorithms are available in most general-purpose computational
software packages.

A suitable choice of J is essential to prevent divergence of the tracking
algorithm and to minimize overstepping of a stationary point. Both the
curvature of a trajectory and the accuracy requirement of tracking influence
the selection of &. In practice, a suitably small default value of § is chosen
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for a problem. If stepping from one point on a trajectory to an adjacent
point on the same trajectory is not achieved in a certain number of local
iterations, the default value of & is halved and a new initial guess p° is
rendered to restart the search for roots of (6). Once convergence has been
achieved, J is reset to its default value to find the next trajectory point.

3. Properties of Homotopy and Relaxation Trajectories

3.1, Differential Topology Aspects. The function g(x, A) in (2) can be
viewed as a smooth map from & x R to R". If y*e R" is a regular value, the
pre-image theorem in differential topology asserts that the pre-images of
y* are one-dimensional manifolds or trajectories in % x R. Therefore, the
solutions of (2) will be smooth one-dimensional trajectories if OeR" is a
regular value of the map g(x, A). Fortunately, the famous Sard theorem
(Ref. 8) asserts that almost all the points in R” are regular values, i.e.,
all the critical values in R" form a set of measure zero. Furthermore, the
parameterized Sard theorem (Ref. 9) can be applied to the fixed-point homo-
topy scheme and the relaxation scheme to conclude that 0eR" is a regular
value for almost every x; in # and v in R". Therefore, it is expected that
the homotopy and relaxation trajectories are smooth and nonintersecting
one-dimensional curves in & X R.

However, singularities, such as the kind of bifurcation in which two or
more trajectories intersect at a single point, might occur along the homotopy
and relaxation trajectories. Unfortunately, bifurcations cannot be completely
treated by a simple analytic approach because of the huge variety of bifurca-
tions (Refs. 10-11). Each type of bifurcation has its own distinct properties
and needs to be classified and studied separately. There have been attempts
to deal with some simple types of bifurcation using numerical procedures.
One strategy is to derive conditions for the tangent directions of smooth
trajectories intersecting at a simple bifurcation point (Ref. 12). Another
approach is to perform an exhaustive search in the neighborhood of a bifur-
cation point for points on all the intersecting trajectories (Refs. 13-14).

In fact, multiple solutions can still be found without attacking the
difficult bifurcation problem. The strategy used in this study is to ignore the
occurrence of intersecting trajectories, if any. The fixed-point homotopy
scheme is required to only find one stationary point. Then, multiple relaxa-
tion trajectories are systematically followed, as described earlier, to search
for other stationary points instead of tracking bifurcating trajectories of a
single homotopy or relaxation trajectory. Therefore, a treatment of bifurca-
tion is not explicitly considered in the proposed global optimization
algorithm.
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3.2, Trajectory Behavior. The Jacobian matrix of the fixed-point
homotopy scheme defined in (3) is given by

Vgr(x, 1) =[(1-A)Mp+AVVf(x), —Mr(x — x0) + Vf(x)].

At the starting point po=[xJ, 0]” on the homotopy trajectory, the Jacobian
matrix is equal to

Vgr(xo, 0)=[MF, Vf(x0)]. @)

Since the matrix M is nonsingular, the Jacobian matrix in (7) has full rank.
Therefore, p, is a regular point, and there is a unique and smooth one-
dimensional solution trajectory of (3) in the neighborhood of p, and passing
through po. Assume that this trajectory segment is parameterized by the arc
length s in the neighborhood of py, i.e.,

x=x(s), x(0)=1xo,
A=4(s), A(0)=0;

then, (3) can be differentiated with respect to s at p, and the result is
Mp3(0) + A(0)Vf(x0) =0.

This leads to

X(0) —MF'Vf(xo)]
[;1(0)]“[ i ' ®)

Therefore, the unit tangent vector of the homotopy trajectory at the starting
point po can be computed from (8) and used as the starting value for u in
the trajectory tracking algorithm.

If the nonsingular matrix My in (3) is symmetric, g-(x, A) can be inte-
grated with respect to x so that

Gr(x, A) =J‘ gr(x, A) dx

=(1—2A)(1/2)(x — x0) "Mr(x — x0) + Af (x). (9)

It is clear from (9) that Gr(x, A) is made up of a simple quadratic function
(1/2)(x—x0) "M r(x—x,) and the objective function f(x). If the leftmost
n % n block of Vgr(x, A) remains invertible along the trajectory, a local maxi-
mum of f(x) will be reached if My is negative-definite. Under the same
condition on Vgr(x, A1), a local minimum of f(x) will be reached if My is
positive-definite. Therefore, the fixed-point homotopy scheme can be biased
toward either a local maximum or a local minimum for the first stationary
point to be found.
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The Jacobian matrix of the relaxation scheme defined in (4) is given by
VgR (x’ A’) = [va(x): v]‘

If x* is a regular stationary point of f(x), the Jacobian matrix at p*=

[x*7, 117 is equal to

Vgr(x*, 1)=[VVf(x"), v]. (10)

Since the Hessian matrix VVf(x ™) is nonsingular because x * is regular, the
Jacobian matrix in (10) has full rank. Therefore, p* is a regular point and
there is a unique and smooth one-dimensional solution trajectory of (4) in
the neighborhood of p* and passing through p*. Assume that this trajectory
segment is parameterized by the arc length s in the neighborhood of p*, i.c.,

x=x(s), x(0)=x*
A=A (5), A(0)=1;

then, (4) can be differentiated with respect to s at p* and the result is
VV/(x*)%(0) + A(0)»=0.

This leads to

. _ *yy—1
[;(0)}{ (VV/(x*)) v] an
A{0) 1

Therefore, the unit tangent vector of the relaxation trajectory at the starting
point p* can be computed from (11) and used as the starting value for u in
the trajectory tracking algorithm,

3.3. Muitiple Trajectory Components. Under generic regularity
assumptions, both homotopy and relaxation trajectories are smooth one-
dimensional curves in R"*'. However, it is possible that the set of trajectories
has more than one component. In that case, not all the stationary points lie
on a single connected trajectory component. To find all the stationary points,
all the separate components of the trajectory need to be found. There is no
guaranteed complete solution for this task, and this remains as the major
problem with the generalized trajectory methods.

Conditions which guarantee only one trajectory component were given
in Ref. 15. But these conditions have only mathematical merit, since they
are too strong and difficult to apply in most applications. Several methods
have been proposed to deal with multiple trajectory components. One
approach is to connect the separate trajectory components using certain
one-dimensional curves which connect the trajectories through touching
points (Ref. 16). However, not every trajectory component has a touching
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point. Another approach is try to connect different trajectory components
at plus and minus infinity (Ref. 17). But, connection at infinity is not always
possible because some trajectory components may be closed and remain
bounded. Furthermore, reaching plus and minus infinity at the same point
by different trajectory components is not guaranteed.

As discussed earlier, a new approach is presented here to deal with
multiple trajectory components. Instead of using only one relaxation trajec-
tory and dealing with the problem of connecting separate trajectory compo-
nents, multiple relaxation trajectories are generated in a systematic way. The
application of multiple relaxation generates redundancy and increases the
chance of finding all the stationary points, Furthermore, the multiple trajec-
tories passing through a stationary point can be traced simultaneously on
parallel computers to increase efficiency in high-dimensional spaces.

4, Numerical Examples

4.1. Global Optimization Problem. In this example, the goal is to find
all the points giving the global maximum of the objective function

4

f(x)=zl w,G(x; m;, ), x=[x,, x:)] e B<R, (12)
where

wy=w,y= 1.0, wi=w;=0.5,

m=[2.5251"=-m,, m3=[2.0,-2.0)"=—mj,
and where
G (x; my, Ziy=[1/27/|Z,[] expl~(1/2)(x ~m)) & (x—my)] (13)

is the two-dimensional Gaussian distribution function with mean m; and
covariance matrix Z,. The covariance matrices X, are equal to 2 x 2 identity
matrices, and the region of interest & is set to be [—5, 5] x[—5, 5]. The
three-dimensional mesh plot of f(x) in (12) is given in Fig. 2. It is clear
from the plot that f(x) has nine stationary points in #. Four of them give
local maxima, one of them gives a local minimum, and the remaining four
are saddle points.
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Fig. 2. Three-dimensional mesh plot of the objective function in (12).

The fixed-point homotopy scheme defined in (3) is first applied. The
matrix My is set equal to the negative of the 2 x 2 identity matrix, since we
want the homotopy trajectory to converge to a local maximum. Three
different initial guesses [P'(—1, 0), Py(—4, 1), P5(—2, 4)] are used, and the
homotopy trajectories are shown in Fig, 3. It is noted that all three traject-
ories reach the same local maximum point A(-2, 2).

From point A, the relaxation scheme is applied to find the other station-
ary points. Two relaxation trajectories I'y and I'; going through A are
tracked and four more stationary points,

B(0.061,2.229), C(2.5,2.5), D(-2.229,-0.061), E(=2.5,~2.5)

are located as shown in Fig. 4. By checking their Hessian matrices, points
B and D are found to be saddle points while points C and E give local
maxima. From point B, the relaxation trajectory I'; is tracked and two more
stationary points,

F(0,0), G(—0.061, —2.229),

are found. Point F gives a local minimum while point G is a saddle point.
By following the relaxation trajectory I'y from point C, two more stationary
points,

H(2.229, 0.061), 1(2, -2),



222 JOTA: VOL. 97, NO. 1, APRIL 1998

06d
oad i

02d.

0\-"';-.-

o- '»"""'.' - - __ ;1' - ;_._ - ;‘.- g

-4 -4

Fig. 3. Fixed-point homotopy trajectories for the objective function in (12).

are reached. Point H is a saddle point and point I gives a local maximum,
It is noted that these stationary points can also be reached by tracking the
relaxation trajectories I's and Ts.

All the special relaxation trajectories through the stationary points using
v equal to e¢; have now been explored so that the process is terminated. In
this particular example, we can see from Fig. 2 that the nine points A to I
are the only stationary points in 4. Therefore, it is concluded that all the
stationary points in this example can be located using the presented algo-
rithm, Furthermore, points C and E are local maxima with the same largest
function value, so they give the greatest local maxima; in fact, they give the
global maximum of the given f(x) in # because the boundary values of f(x)
are all less than this value.

4.2. Model Identifiability Problem. In this example, a local model
identifiability problem arising in statistical system identification (Ref. 18) is
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Relaxation trajectories in the search of the global extrema of the objective function

studied by using the generalized trajectory methods. Consider a six-story
building modeled using a set of linear chain models with equations of motion

Mi() + C4(1) + Kq() =1 (1),

where M, C, K are the mass, damping, and stiffness matrices of the building;
£ () is the exciting force acting on the building and g(¢) is the displacement
vector at time ¢ whose components are the displacement of each floor of the
building relative to its base. The mass matrix M and stiffness matrix K are

given by

0
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6,+0, -0, 0
-0, 6,t60; -0,
K=k, —0; )
Os+6s —0¢
0 —0 B¢

where m, is the mass of each floor and &, is some nominal interstory stiffness.
These two parameters are assumed to be known, whereas the stiffness param-
eters =[6,,0,, ..., 806" are unknown. In the particular case considered
here, the base acceleration z(¢) due to an earthquake is assumed to have
been measured so that the exciting force f(r) = —M1z(¢) is known. The corre-
sponding motion g4(?) at the roof is also assumed to have been measured.
The problem is to determine the number of equivalent stiffness models con-
sistent with these data.

Udwadia (Ref. 19) showed that the solution for € is nonunique and
that there is at most 6! =720 solutions. Beck and Katafygiotis (Ref. 18) have
shown that there are 8 solutions if the data was generated by a uniform
stiffness system with 6=[1, 1,1, 1, 1, 1]”. They showed that the solutions
are actually given by those stiffness models which have the same natural
frequencies as the actual system, i.e., all such models have the same roof
response for a given base motion. Let @, @,, . . ., @s denote the six natural
frequencies of a stiffness model, and let w9, w3, . . . , e be the corresponding
natural frequencies of the uniform stiffness system. Therefore, to find all the
equivalent stiffness models, all of the roots of the following set of nonlinear
equations must be found:

01(0)— 03=0, ..., 0s(8) — 02=0. (14)

Since one of the roots of (14), i.e., the uniform stiffness model, is
assumed to be known already, the relaxation scheme is applied to find all
the other roots of (14). The stiffness parameters for the eight computed
solutions are summarized in Table 1; they are the same as those presented
in Ref, 18. Twelve relaxation trajectories, labeled as I'y, I, ..., T2, were
tracked in searching for these solutions. All the different stiffness models
which can be reached by each trajectory are summarized in Table 2. A o
mark is placed in Table 2 to indicate that a particular stiffness model can
be reached by a certain relaxation trajectory, while a blank means the oppo-
site. Also, a * mark is used to designate a relaxation trajectory which is a
closed curve. For each trajectory, the relaxed natural frequency is indicated
in the last column in Table 2. Also, it can be deduced from Table 2 that all
of the 48 possible cases for relaxing each natural frequency at a time from
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No. 01 02 03 04 95 95
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.5848 0.6963 1.2875 0.7574 1.1766 0.7898
3 1.9970 0.7980 0.7095 1.3848 0.7113 0.8980
4 2.0000 1.0000 1.0000 0.5000 1.0000 1.0000
5 2.0932 1.0476 0.7240 0.7374 0.6705 1.2738
6 2.2911 0.6304 0.9321 1.1774 0.9515 0.6631
7 24913 0.8777 0.6514 1.1106 0.6672 0.9475
8 2.8252 0.6753 0.8826 0.9021 0.8753 0.7520

Table 2. Relaxation trajectories and reachable equivalent stiffness models.

225

Equivalent stiffness model

Relaxed

Trajectory 1 2 3 4 5 6 7 8 ®
*T, e 'y ° ° 'y ° ° 'y o
*T, ' ° . . ° . 'y * W
*T, ° . . ° @3
*Ts . . 'Y 'y W,
*rs . . . . @s
T ° . e
*Ty 'Y ° ™ . ws
T . ° Ws
I ° [} W6
*Tw ° ° ° ° 3
*'n ° . ° . @4
r|2 L] L] W6

each found stiffness solution has been covered by the 12 relaxation traject-
ories that were tracked.

5. Conclusions

It is not easy to claim that one global optimization method is more
efficient than another method due to the lack of generally accepted measures
for the performance of global optimization methods. Each method has its
own advantages and drawbacks. It is our belief, however, that the combined
homotopy and relaxation schemes provide a novel and powerful numerical
procedure to find multiple local extrema as part of a strategy for global

optimization.
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