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Model Selection Using Response Measurements:
Bayesian Probabilistic Approach
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Abstract: A Bayesian probabilistic approach is presented for selecting the most plausible class of models for a structural or m
system within some specified set of model classes, based on system response data. The crux of the approach is to rank th
models based on their probabilities conditional on the response data which can be calculated based on Bayes’ theorem and a
expansion for the evidence for each model class. The approach provides a quantitative expression of a principle of model pa
of Ockham’s razor which in this context can be stated as ‘‘simpler models are to be preferred over unnecessarily complica
Examples are presented to illustrate the method using a single-degree-of-freedom bilinear hysteretic system, a linear two-story
a ten-story shear building, all of which are subjected to seismic excitation.
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Introduction

The problem of model identification using dynamic data fro
structural or mechanical system is an active area of resea
aerospace, civil, and mechanical engineering, because of i
portance in model updating, active control, and health/cond
monitoring ~Gersch et al. 1976; Beck 1978; Hoshiya and S
1984; Pi and Mickleborough 1989; Hjelmstad et al. 1992; M
tershead and Friswell 1993; Beck and Katafygiotis 1998; Ka
giotis and Beck 1998; Katafygiotis et al. 1998; Quek et al. 1
Sanayei et al. 1999; Shi et al. 2000; Pappa et al. 2000; V
et al. 2000!.

The uncertainties in the values of the model parameters c
updated using Bayesian inference~Jeffreys 1961; Box and Tia
1973; Sivia 1996; Jaynes 2003!. A Bayesian system identificatio
framework has been presented for both linear and nonlinea
namic models for the case of measured input and output~Beck
and Katafygiotis 1998; Katafygiotis et al. 1998; Beck and
2002; Yuen and Katafygiotis 2002! and for the case of outpu
only measurements~Katafygiotis and Yuen 2001; Yuen a
Katafygiotis 2001; Yuen et al. 2002; Yuen and Beck 2003!.

The usual approach in system identification is to find the
~optimal! model in a specified class of models, e.g., a clas
shear building models or a class of bilinear hysteretic models
more general problem of model class selection has not been
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explored in system identification. It is obvious that a more c
plicated model can ‘‘fit’’ the data better than a less complic
one which has fewer adjustable~uncertain! parameters. Therefor
if the optimal model class is chosen by minimizing some nor
the error between the output data and the corresponding p
tions of the optimal model in each class, the optimal model
will always be the most complicated one. For example, in m
identification, using a 20-mode model would always be b
than using a 10-mode model because the former would fit the
better, although the improvement might be negligible. This
proach is therefore likely to lead to overfitting the data. Whe
overfitted model is used for future prediction, it will very like
lead to poor results because the model will depend too muc
the details of the data, and the noise in the data might ha
important role in the data fitting. Therefore, in model class s
tion, it is necessary to penalize a complicated model. This
was also noted for structural mechanics problems by Grig
et al. ~1979!.

The same point was recognized much earlier by Jeffreys,
did pioneering work on the application of Bayesian methods~Jef-
freys 1961!. He pointed out the need for a quantitative expres
of the very old philosophy expounded by William of Ockham~or
Occam in Latin! and known as ‘‘Ockham’s razor,’’ which
roughly translated from Latin as ‘‘It is vain to do with more w
can be done with fewer’’~Sivia 1996!. In the present context, th
philosophy implies that simpler models are preferable to un
essarily complicated ones, that is, the selected class of m
should agree closely with the observed behavior of the syste
otherwise be as simple as possible. Box and Jenkins~1970! also
emphasize the same principle when they refer to the nee
parsimonious models in time-series forecasting, although th
not give a quantitative expression of their principle of parsim
Akaike recognized that maximum likelihood estimation is in
ficient for model order selection in time-series forecasting u
autoregressive moving average~ARMA ! models and came u
with another term to be added to the logarithm of the likelih

function that penalizes parameterization of the models~Akaike
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1974!. This was later modified by Akaike~1976! and by Schwar
~1978!.

In recent years, there has been a reappreciation of the wo
Jeffreys on the application of Bayesian methods~Jeffreys 1961!,
especially due to the expository publications of Jaynes~Jaynes
1983, 2003!. In particular, the Bayesian approach to model se
tion has been further developed by showing that theevidencefor
each model class provided by the data~that is, the probability o
getting the data based on the whole model class! automatically
enforces a quantitative expression of a principle of model p
mony or of Ockham’s razor~Gull 1988; Mackay 1992; Sivi
1996!. There is no need to introduce ad hoc penalty terms as
done in some of the earlier work on model class selection.

In this paper, the Bayesian approach is expounded and a
to select the most plausible class of dynamic models represe
a structural or mechanical system~from within some specified s
of model classes! by using its response measurements. In the
section, the model class selection procedure is explained.
two Bayesian system identification techniques are introd
using input-output data and output-only data, respectively
nally, illustrative examples are presented using a single-de
of-freedom bilinear hysteretic system, a linear two-story fra
and a linear ten-story shear building, all of which are subjecte
seismic excitation.

Model Class Selection

Let D denote the input-output or output-only dynamical data f
a structural or mechanical system. The goal is to useD to selec
the most plausible class of models representing the system
NM given classes of modelsM1 , M2 ,...,MNM

. Since probabil
ity may be interpreted as a measure of plausibility based on s
fied information~Cox 1961!, the probability of a class of mode
conditional on the set of dynamic dataD is required. This can b
obtained by using Bayes’ theorem as follows:

P~Mj uD,U!5
p~DuMj ,U!P~Mj uU!

p~DuU!
, j 51,2, . . . ,NM

(1)

where p(DuU)5( j 51
NM p(DuMj ,U)P(Mj uU) by the theorem o

total probability andU expresses the user’s judgement on
initial plausibility of the model classes, expressed as a prior p
ability P(Mj uU) on the model classesMj , j 51, . . . ,NM , where
( j 51

NM P(Mj uU)51. The factorp(DuMj ,U) is called theevidence
for the model classMj provided by the dataD. Note thatU is
irrelevant inp(DuMj ,U) and so it can be dropped in the notat
because it is assumed thatMj alone specifies the probabil
density function~PDF! for the data, that is, it specifies not only
class of deterministic dynamic models but also the probab
descriptions for the prediction error and initial plausibility
each model in the classMj ~Beck and Katafygiotis 1998!. Eq.~1!
shows that the most plausible model class is the one that
mizesp(DuMj)P(Mj uU) with respect toj.

Note thatP(Mj uD,U) can be used not only for selection of
most probable class of models, but also for response pred
based on all the model classes. Letu denote a quantity to b
predicted, e.g., first-story drift. Then the PDF ofu given the dat
D can be calculated from the theorem of total probability as
lows: p(uuD,U)5( j 51

NM p(uuD,Mj)P(Mj uD,U), rather than
using only the best model for prediction. However, if the pr
ability P(MbestuD,U) for the best model class is much larger t

the probability of the others, then the above expression is approxi-

JOURNA
mated byp(uuD,U)5p(uuD,Mbest), and it is sufficient to jus
use the best model class for predicting the system behavior

The evidence forMj provided by the dataD is given by the
theorem of total probability

p~DuMj !5E
Q j

p~Duuj ,Mj !p~uj uMj !duj , j 51,2, . . . ,NM

(2)

whereuj is the parameter vector in a parameter spaceQ j,RNj

that defines each model inMj , the prior PDFp(uj uMj) is speci-
fied by the user and the likelihoodp(Duuj ,Mj) is evaluated
using the methods presented in the next section.

In globally identifiablecases~Beck and Katafygiotis 1998!,
the updated~posterior! PDF foruj given a large amount of dataD
may be approximated accurately by a Gaussian distributio
p(DuMj) can be approximated by using Laplace’s method
asymptotic approximation~Papadimitriou et al. 1997!

p~DuMj !'p~Duûj ,Mj !p~ ûj uMj !~2p!Nj /2uH j~ ûj !u21/2,

j 51,2, . . . ,NM (3)

where Nj is the number of uncertain parameters for the m
classMj , the optimal parameter vectorûj is the most probab
value @it is assumed to maximizep(uj uD,Mj) in the interior
of Q j ], and H j(ûj) is the Hessian matrix o
2 ln@p(Duuj ,Mj)p(uj uMj)# with respect touj evaluated atûj .
For unidentifiablecases~Beck and Katafygiotis 1998!, the evi-
dencep(DuMj) can be calculated by using an extension of
asymptotic expansion used in Eq.~3! ~Beck and Katafygioti
1998; Katafygiotis et al. 1998! or by using a Markov chain Mon
Carlo simulation technique~Beck and Au 2002! on Eq. ~2!. The
discussion here will focus on theglobally identifiablecase.

The likelihood factorp(Duûj ,Mj) in Eq. ~3! will be higher
for those model classesMj that make the probability of the da
D higher, that is, that give a better ‘‘fit’’ to the data. For exam
if the likelihood function is Gaussian, then the highest valu
p(Duûj ,Mj) will be given by the model classMj that gives the
smallest least-squares fit to the data. As mentioned earlie
likelihood factor favors model classes with more uncertain
rameters. If the number of data pointsN in D is large, the likeli
hood factor will be the dominant one in Eq.~3! because it in
creases exponentially withN, while the other factors behave
N21, as shown below.

The remaining factorsp(ûj uMj)(2p)Nj /2uH j(ûj)u21/2 in Eq.
~3! are called theOckham factorby Gull ~1988!. The Ockham
factor represents a penalty against parameterization~Gull 1988;
Mackay 1992!, as we demonstrate in the following discussio

We wish to show that the Ockham factor decreases exp
tially with the number of uncertain parameters in the model c
For this purpose, consider an alternative expression for it, de
as follows. It is known that for a large numberN of data points in
D, the updated~posterior! PDFp(uj uD,Mj) is well approximate
by a Gaussian PDF with meanûj and covariance matrix given
the inverse of the Hessian matrixH j(ûj). The principal posterio
variances foruj , denoted bys j ,i

2 with i 51,2, . . . ,Nj are there
fore the inverse of the eigenvalues of this Hessian matrix~Beck
and Katafygiotis 1998!. The determinant factoruH j(ûj)u21/2 in the
Ockham factor can therefore be expressed as the product of
s j ,i for i 51,2, . . . ,Nj . Assume that the prior PDFp(uj uMj) is
Gaussian with mean~most probable value a priori! ūj and a di-
agonal covariance matrix with variancesr j ,i

2 with

i 51,2, . . . ,Nj . The logarithm of the Ockham factor for the
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model classMj , denoted byb j , can therefore be expressed

b j5 ln@p~ ûj uMj !~2p!Nj /2uH j~ ûj !u21/2#

'2(
i 51

Nj

ln
r j ,i

s j ,i
2

1

2 (
i 51

Nj S û j ,i2 ū j ,i

r j ,i
D 2

(4)

Since the prior variances will always be greater than the pos
variances if the data provide any information about the m
parameters in the model classMj , all the terms in the first sum
Eq. ~4! will be positive and so will the terms in the second s
unless the posterior most probable valueû j ,i just happens to co
incide with the prior most probable valueū j ,i . Thus, one migh
expect that the log Ockham factorb j will decrease if the numbe
of parametersNj for the model classMj is increased. This ex
pectation is confirmed by noting that the posterior variance
inversely proportional to the number of data pointsN in D, so the
dependence of the log Ockham factor onN is

b j52
1

2
Nj ln N1Rj (5)

where the remainderRj depends primarily on the choice of pr
PDF and isO~1! for largeN. It is not difficult to show that thi
result holds for even more general forms of the prior PDF
the Gaussian PDF used here.

It follows from Bayes’ theorem that we have the exact r
tionship

p~DuMj !5p~Duûj ,Mj !p~ ûj uMj !/p~ ûj uD,Mj ! (6)

A comparison of this equation and Eq.~3! shows that the Ockha
factor is approximately equal to the ratiop(ûj uMj)/p(ûj uD,Mj)
which is always less than unity if the data provide any infor
tion about the model parameters in the model classMj . Indeed
for large N, the negative of the logarithm of this ratio is
asymptotic approximation of the information aboutuj provided
by dataD ~Kullback 1968!. Therefore, the log Ockham factorb j

removes the amount of information aboutuj provided byD from
the log likelihood lnp(Duûj ,Mj) to give the log evidenc
ln p(DuMj).

The Ockham factor may also be interpreted as a measu
robustness of the model classMj . If the updated PDF for th
model parameters for the given model class is very peaked
the ratio p(ûj uMj)/p(ûj uD,Mj), and so the Ockham factor,
very small. But a narrow peak implies that response predic
using this model class will depend too sensitively on the opt
parametersûj . Small errors in the parameter estimation will le
to large errors in the response predictions. Therefore, a cla
models with a small Ockham factor will not be robust to nois
the data during parameter estimation, that is, during selecti
the optimal model within the class.

To summarize, in the Bayesian approach to model selec
the model classes are ranked according top(DuMj)P(Mj uU) for
j 51, . . . ,NM , where the best class of models representing
system is the one which gives the largest value of this qua
The evidencep(DuMj) may be calculated for each class of m
els using Eq.~3! where the likelihoodp(Duûj ,Mj) is evaluated
using the methods presented in the next section. The prior d
bution P(Mj uU) over all the model classesMj , j 51, . . . ,NM ,
must be specified. In this work, a uniform prior distribution
chosen, leaving the Ockham factor alone to penalize m

classes with increased numbers of parameters.

194 / JOURNAL OF ENGINEERING MECHANICS © ASCE / FEBRUARY 200
Comparison with Akaike’s Approach

In the case of Akaike’s information criterion~Akaike 1974!, the
best model class among theMj for j 51,2, . . . ,NM is chosen b
maximizing an objective function AIC(Mj uD) over j that is de
fined by

AIC~Mj uD!5 ln p~Duûj ,Mj !2Nj (7)

where the log likelihood function is roughly proportional to
number of data pointsN in D, while the penalty term is taken
be Nj , the number of adjustable parameters in the model
Mj . @Akaike actually stated his criterion as minimizing22~AIC!
but the equivalent form is more appropriate here.# When the num
ber of data points is large, the first term will dominate. Aka
~1976! and Schwarz~1978! later developed independently anot
version of the objective function, denoted BIC, that is define

Fig. 1. Relationship between restoring force and displaceme
bilinear hysteretic system~Example 1!

Fig. 2. Response measurements of oscillator for three leve
excitation~Example 1!
4
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BIC~Mj uD!5 ln p~Duûj ,Mj !2
1

2
Nj ln N (8)

where now the penalty term increases with the number of
pointsN.

BIC can be compared directly with the logarithm of the e
dence from Eq.~3!

ln p~DuMj !' ln p~Duûj ,Mj !1b j (9)

where the logarithm of the Ockham factorb j is given by Eq.~5!.
This shows that for largeN, the BIC agrees with the leading ord
terms in the logarithm of the evidence and so in this case
equivalent to the Bayesian approach using equal priors for
the P(Mj uU).

Model Updating Using a Bayesian Framework

A general Bayesian framework for structural model updating
proposed in~Beck and Katafygiotis 1998!. It was originally pre
sented using input-output measurements but it was recent
tended for output-only measurements~Katafygiotis and Yue
2001; Yuen and Katafygiotis 2001; Yuen et al. 2002; Yuen
Beck 2003!. In this section, two of these methods are prese
for input-output data and for output-only data, respectively.

Input-Output Measurements

In this section, a Bayesian approach for linear/nonlinear m
updating using input-output measurements is presented. Fo

Fig. 3. Hysteresis loops of oscillator for three levels of excita
~Example 1!
tails, see Beck and Katafygiotis~1998!.

JOURNA
Consider a system withNd degrees of freedom~DOFs! and
equation of motion

Mẍ1fs~x,ẋ;us!5Tf ~ t ! (10)

whereMPRNd3Nd is the mass matrix,fsPRNd is the nonlinea
restoring force characterized by the structural parametersus , T
PRNd3Nf is a force distributing matrix, andf(t)PRNf is an ex-
ternal excitation, e.g., force or ground acceleration, which i
sumed to be measured.

Assume now that discrete response data are availableN0

(<Nd) observed DOFs. LetDt denote the sampling time ste
Because of measurement noise and modeling error, referr
hereafter as prediction error, the measured responsey(n)PRN0

~at time t5nDt) will differ from the model responseL0x(n)
corresponding to the measured degrees of freedom whereL0 de-
notes anN03Nd observation matrix, comprised of zeros a
ones. Herein, the prediction error is modeled as discrete
mean Gaussian white noise vector processh(n)PRN0:

y~n!5L0x~n!1h~n! (11)

where the discrete processh satisfies

E@h~n!hT~p!#5Shdnp (12)

whereE@•# denotes expectation,dnp denotes the Kronecker de
function, andSh denotes theN03N0 covariance matrix of th
prediction error processh.

Let u denote the parameter vector for identification. It m
include the following parameters:~1! The structural paramete
us ; ~2! parameters defining the structural mass distribution~3!
the elements of the force distributing matrixT; and ~4! the ele-
ments of the upper right triangular part of the prediction-e
covariance matrixSh ~symmetry defines the lower triangular p
of this matrix!. Herein, it is assumed that the mass distribu
can be modeled sufficiently accurately from structural draw
and so it is not part of the model parameters to be identified

Let the dynamic dataD consist of the measured time histor
at N discrete times of the excitation and observed response.
covariance matrix for the prediction errors isSh5sh

2 IN0
, imply-

ing equal variances and stochastic independence for the p

Table 1. Optimal Parameter Values for Each Model C
Representing the Oscillator~Example 1!

Excitation level Model class c k1 k2 xy sh

10% El Centro
earthquake

1 0.0204 1.000 — — 0.000
2 — 1.019 — UN 0.001
3 — 1.019 UN UN 0.001

15% El Centro
earthquake

1 0.0902 0.989 — — 0.002
2 — 1.0179 — 0.0214 0.001
3 — 1.001 0.108 0.0197 0.00

20% El Centro
earthquake

1 0.1928 0.956 — — 0.009
2 — 0.9936 — 0.0211 0.005
3 — 0.9942 0.0924 0.0200 0.00

Table 2. Probabilities of Different Model Classes Based on D
~Example 1!

Excitation level P(M1uD,U) P(M2uD,U) P(M3uD,U)

10% El Centro earthquake 1.0 3.13 1021217 3.131021217

15% El Centro earthquake 4.431021174 3.23 102957 1.0
20% El Centro earthquake 6.431022303 5.73 1021609 1.0
L OF ENGINEERING MECHANICS © ASCE / FEBRUARY 2004 / 195
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tion errors for different channels of measurements, then th
dated PDF of the model parametersu given the dataD and mode
classM may be expressed as

p~uuD,M!5c1p~uuM!~2p!2NN0/2sh
2NN0

3expS 2
NN0

2sh
2

J1~uuD,M!D (13)

wherec1 is a normalizing constant andp(uuM) is the prior PDF
of the model parametersu expressing the user’s judgement ab
the relative plausibility of the values of the model parame
before the data are used. The objective functionJ1(uuD,M) is
given by

J1~uuD,M!5
1

NN0
(
k51

N

iL0x~kDt;u,M!2y~kDt !i2 (14)

wherex(kDt;u,M) is the calculated response based on the
sumed class of models and the parameter vectoru while y(kDt)
is the measured response at timekDt. Furthermore,i•i denotes
the Euclidean norm of a vector. The most probable model pa
etersû are obtained by maximizingp(uuD,M) in Eq. ~13!. For
largeN, this is equivalent to minimizingJ1(uuD,M) in Eq. ~14!
over all parameters inu that it depends on, because this fac
dominates in Eq.~13!. The most probable value of the predictio

error variance inû is ŝh
25minJ1(uuD,M). In the globally iden

tifiable case~Beck and Katafygiotis 1998!, it turns out tha
p(uuD,M) is well approximated by a Gaussian distribution w
meanû and covariance matrix equal to the inverse of the Hes
of 2 ln@p(uuD,M)# at û.

Output-Only Measurements

In this section, a Bayesian approach for linear/nonlinear m
updating using output measurements is presented. For detai
Katafygiotis and Yuen~2001! and Yuen and Beck~2003!.

Consider the same equation of motion as in Eq.~10!. However
now the external excitationf(t)PRNf is modeled by a Gaussi
process with zero mean and a spectral density matrix fun

Fig. 4. Linear two-story structural frame~Example 2!
characterized by the excitation parametersuf :

196 / JOURNAL OF ENGINEERING MECHANICS © ASCE / FEBRUARY 200
e

Sf~v!5Sf~v;uf ! (15)

Assume response data are available atN discrete times fo
N0 (<Nd) observed DOFs with prediction error modeled a
Eqs.~11! and ~12!.

Let u denote the parameter vector for identification. It m
include the following parameters:~1! The structural paramete
us ; ~2! the excitation parametersuf ; and ~3! the elements of th
upper right triangular part of the prediction-error covariance
trix Sh ~symmetry defines the lower triangular part of this
trix!.

Spectral Density Estimator and Its Statistical Properties
Consider the stochastic vector processy(t) and a finite number o
discrete dataYN5$y(n),n51, . . . ,N%. Based onYN , we intro-
duce the following discrete estimator of the spectral density
trix of the stochastic processy(t):

Sy,N~vk!5yN~vk!ȳN
T~vk! (16)

where z̄ denotes the complex conjugate of a complex variabz
andyN(vk) denotes the~scaled! discrete Fourier transform of t
vector processy at frequencyvk , as follows:

yN~vk!5A Dt

2pN (
n50

N21

y~n!e2 ivknDt (17)

where vk5kDv, k50, . . . ,N121 with N15INT@(N11)/2#,
Dv52p/T, andT5NDt.

Using Eq.~11! and taking the expectation of Eq.~16! ~noting
that x andh are taken as stochastically independent! yields

E@Sy,N~vk!uu#5L0E@Sx,N~vk!uu#L0
T1E@Sh,N~vk!# (18)

whereSx,N(vk) andSh,N(vk) are defined in a manner similar
that described by Eqs.~16! and ~17!. It easily follows from Eqs
~12! and ~16! that

E@Sh,N~vk!#5
Dt

2p
Sh[Sh0 (19)

The termE@Sx,N(vk)uu# in Eq. ~18! can also be easily calculat
by noting thatSx,N(vk) has elements

Sx,N
~ j ,l !~vk!5

Dt

2pN (
n,p50

N21

xj~n!xl~p!e2 ivk~n2p!Dt (20)

Grouping together terms having the same value of (p2n) in Eq.
~20! and taking the expectation we obtain the following exp
sion:

E@Sx,N
~ j ,l !~vk!#5

Dt

4pN (
n50

N21

gn@Rx
~ j ,l !~nDt !e2 ivknDt

1Rx
~ j ,l !~2nDt !eivknDt# (21)

wheregn is given byg05N andgn52(N2n), n>1. Rx
( j ,l ) are

the cross-correlation functions between thejth andlth componen

Table 3. Optimal Parameter Values for Each Model C
Representing the Structural Frame~Example 2!

Parameter f1 f2 u1 u2 u3 Sn1 Sn2

Class 1 1.131 1.007 0.913 0.879 — 0.158 0.1
Class 2 1.057 1.536 1.130 1.130 — 0.150 0.0
Class 3 1.027 1.093 0.988 1.001 1.024 0.085 0.
of the responsex. However, it is usually not possible to obtain the
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correlation functions theoretically for nonlinear systems. In
case, we can generate samples of the response and hence s
of their spectral density estimators. Then, the expected valu
the spectral estimates can be approximated by the average
spectral density estimators obtained from the samples.

Assume that there is a set of independent, identically dis
uted, time historiesYN

(1) ,...,YN
(M ) . As N→`, the correspondin

discrete Fourier transformsyN
(n)(vk), n51, . . . ,M are indepen

dent and follow an identical complexN0-variate normal distribu
tion with zero mean. Then, ifM>N0 , according to Krishnaia
~1976!, the average spectral density estimate

Sy,N
M ~vk!5

1

M (
n51

M

Sy,N
~n! ~vk!5

1

M (
n51

M

yN
~n!~vk!ȳN

~n!T

~vk!

(22)

follows a central complex Wishart distribution of dimensionN0

with M DOFs and meanE@Sy,N
M (vk)#. The PDF of this distribu

tion is given by

Fig. 5. Spectra estimated directly from measure

Table 4. Natural Frequencies~in Hz! of Optimal Model in Each
Class~Example 2!

Mode 1 2

Actual 2.000 5.144
Class 1 2.048 5.009
Class 2 2.000 5.323
Class 3 1.995 5.142
JOURNA
es

p„Sy,N
M ~vk!…5c0

uSy,N
M ~vk!uM2N0

uE@Sy,N~vk!#uM

3exp„2M tr$E@Sy,N~vk!#21Sy,N
M ~vk!%…

(23)

where c05M M2Ns
2
p2Ns(Ns21)/2/@Pp51

Ns (M2p)! # is a normaliz
ing constant, anduAu and tr@A# denote the determinant and
trace, respectively, of a matrixA. Note that this approximation
very accurate for largeN even if y(nDt), n51, . . . ,N, is not
Gaussian. This is due to the robustness of the probability d
bution of the discrete Fourier transform with respect to the p
ability distribution of the response signal.

Furthermore, it can be shown that whenN→`, the complex
vectorsyN(vk) andyN(v l) are independent forkÞ l ~Yuen et al
2002!. As a result, the matricesSy,N

M (vk) andSy,N
M (v l) are inde

pendently Wishart distributed forkÞ l , that is

p@Sy,N
M ~vk!,Sy,N

M ~v l !#5p@Sy,N
M ~vk!#p@Sy,N

M ~v l !# (24)

Although Eqs.~23! and ~24! are correct only asymptotically
N→`, it was shown by simulations that these are indeed
accurate approximations in a certain bandwidth of frequencie
the case whereN is finite but large~Yuen 2002!. In the case o
displacements~or accelerations!, this frequency bandwidth corr
sponds to the lower~or higher! frequency rangevkP@v1 ,vK# ~or
vK ,vN121) for some cutoff frequencyvK . The frequency rang
increases as the level of prediction error increases.

and from optimal model in Model Class 1~Example 2!
ments
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Identification Based on Spectral Density Estimates
Based on the above discussion regarding the statistical prop
of the average spectral estimatorSy,N

M (vk), a Bayesian approac
for updating the PDF of the uncertain parameter vectoru is pro-
posed as follows. GivenM>N0 independent sets of observ
dataD5$ŶN

(n) ,n51, . . . ,M %, one may calculate the correspo
ing observed spectral estimate matricesŜy,N

(n) ,n51, . . . ,M using
Eqs. ~16! and ~17!. Next, one can calculate the average ma
estimatesŜy,N

M (vk) using Eq.~22! and then form the setŜy,N
M ,K

5$Ŝy,N
M (kDv),k51, . . . ,K%. Using Bayes’ theorem, the upda

PDF of the model parametersu given the dataŜy,N
M ,K is then given

by

p~uuD,M!'p~uuŜy,N
M ,K ,M!5c2p~uuM!p~Ŝy,N

M ,Kuu,M!
(25)

wherec2 is a normalizing constant such that the integral on
right hand side of Eq.~25! over the domain ofu is equal to 1. Th
factor p(uuM) in the above equation represents the prior P
which expresses the relative plausibilities of different valuesu
based on prior information and engineering judgment. The li
hood p(Ŝy,N

M ,Kuu,M) expresses the contribution of the measu
data. Based on Eqs.~23! and~24!, the likelihood can be express
as follows:

p~Ŝy,N
M ,Kuu,M!.c0

K)
k51

K uŜy,N
M ~vk!uM2N0

uE@Sy,N~vk!#uM

3exp„2M tr$E@Sy,N~vk!#21Ŝy,N
M ~vk!%…

Fig. 6. Spectra estimated directly from measure
(26)
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The most probable parametersû are obtained by minimizin
the objective functionJ2(u)52 ln@p(uuM)p(Ŝy,N

M ,Kuu,M)#. Fur-
thermore, the updated PDFp(uuD,M) can be well approximate
by a Gaussian distribution centered at the optimal pointû if u is
globally identifiable. The covariance matrixSu is equal to the
inverse of the Hessian of the functionJ2(u) evaluated atu5û.
This property provides a very efficient way for the quantifica
of the uncertainty for the model parameters without evalua
high dimensional integrals.

Illustrative Examples

Example 1: Single-Degree-of-Freedom Nonlinear
Oscillator under Seismic Excitation

In this example, a bilinear hysteretic oscillator with linear visc
damping is considered

mẍ1cẋ1 f h~x;k1 ,k2 ,xy!5 f ~ t ! (27)

where m5mass; c5damping coefficient; an
f h(x;k1 ,k2 ,xy)5hysteretic restoring force, whose behavior
shown in Fig. 1. Here,m51 kg is assumed known. The para
eters ũ5@ c̃,k̃1 ,k̃2 ,x̃y#

T used to generate the data arec̃
50.02 N•s/m, k̃151.0 N/m, k̃250.1 N/m, x̃y50.02 m, which
gives a small-amplitude natural frequency of 1/2p Hz.

The oscillator is assumed to be excited by 10, 15, and
scaling of the 1940 El Centro earthquake record. The durati
measurement isT540 s with sampling frequency 60 Hz, so t
the number of data points isN52,400. It is assumed that t

and from optimal model in Model Class 2~Example 2!
ments
earthquake excitation and response displacement are measured to
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give the dataD where 5% rms noise is imposed on the struct
response measurements, i.e., the measurement noise is 5%
rms of the noise-free response. Fig. 2 shows the measureme
the three levels of excitation and Fig. 3 shows the correspon
hysteresis loops. It can be seen that the oscillator behaved lin
~did not yield! when subjected to 10% of the El Centro ea
quake record. Three classes of models are considered. Th
use zero-mean Gaussian discrete white noise as the pred
error model.

Model Class 1 (M1): Linear oscillators with damping coef
cient c.0, stiffness parameterk1.0, and prediction-error sta
dard deviationsh .

Model Class 2 (M2): Elastoplastic oscillators, i.e., biline
hysteretic but withk250, with stiffness parameterk1.0, yielding
level xy and prediction-error standard deviationsh ; and no vis
cous damping.

Model Class 3 (M3): Bilinear hysteretic oscillators wit
preyield stiffnessk1.0, postyielding stiffnessk2.0, yielding
levelxy and prediction-error standard deviationsh . Note that this
class of models does not include the exact model since l
viscous damping is not included.

Independent uniform prior distributions are assumed for
parametersc, k1 , k2 , xy , andsh over the ranges~0,0.5! N•s/m,
~0,2! N/m, ~0,0.5! N/m, ~0,0.1! m, and~0,0.01! m, respectively

Fig. 7. Spectra estimated directly from measure

Table 5. Probabilities of Different Model Classes Based on D
~Example 2!

P(M1uD,U) P(M2uD,U) P(M3uD,U)

2.6310223 1.7310215 1.0
JOURNA
e
r

l
-

Table 1 shows the optimal parameter values for each cla
models for the three levels of excitation using the method
sented in the section ‘‘Input-Output Measurements.’’ ‘‘UN’’ in
cates that the parameter is unidentifiable. For example, inM2

with 10% El Centro earthquake,xy is unidentifiable because t
oscillator behaves perfectly linearly~Fig. 3!. In fact, the optima
parameter values forM1 are very close to their target values
this level of excitation. For higher levels of excitation, the opti
linear model inM1 has lower stiffness and higher values of
damping coefficient to represent the increased flexibility and
ergy dissipation due to yielding.

Table 2 shows the values ofP(Mj uD,U), j 51,2,3, for the
three levels of excitation that are calculated from Eq.~1! using the
evidence for each model from Eq.~3! and equal prior
P(Mj uU)51/3. Note that in all three cases the model cla
other than the most probable model class have essentially
probability, implying that these model classes can be disca
for response prediction. In the case of 10% scaling of th
Centro earthquake record, it is not surprising thatP(M1uD,U) is
the largest since the oscillator behaves linearly~Fig. 3!. However
for higher levels of excitation,P(M3uD,U) is the largest. Al
thoughM3 does not include linear viscous damping, the hy
etic behavior can be captured well by this model. More inte
ingly, M2 outperformsM1 at these two levels of excitatio
Although M2 cannot capture the viscous damping mechan
the energy dissipated by the hysteretic behavior for 15 and
scaling of the El Centro earthquake record is much more si
cant than the contribution from the viscous damping, as ca
seen by the large increase in the optimal damping ratio fo

and from optimal model in Model Class 3~Example 2!
ments
corresponding ‘‘equivalent’’ linear systemsM1 in Table 1. Fur-
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02
thermore, the restoring force behavior forM2 is more correc
than forM1 , although it is still not exact.

This example illustrates an important point in system iden
cation. In reality, there is no exact class of models for a
structure and the best class depends on the system data
used. Response predictions should only be made for exci
levels that do not differ greatly from those used in the sys
identification. If we wish to select between the linear mo
(M1) and the elastoplastic models without viscous dam
(M2), thenM2 is better for high levels of excitation whileM1

is better for lower levels of excitation.

Fig. 8. Ten-story shear building~Example 3!

Table 7. Probabilities of Models with Different Numbers of Mod

Number of modesm 1 2 3

ln likelihood 1894 2251 2511
ln Ockham factor 243.7 256.4 268.9
ln evidence 1850 2195 2442

P(MmuD,U) 3.03102336 2.23102186 6.431027
200 / JOURNAL OF ENGINEERING MECHANICS © ASCE / FEBRUARY 200
s

Example 2: Linear Two-Story Frame under Seismic
Excitation

The second example refers to a 6-DOF two-story structural f
with story heightH52.5 m and widthW54.0 m, as shown i
Fig. 4. All the chosen model classes are linear. All member
assumed to be rigid in their axial direction. For each membe
mass is uniformly distributed along its length. The rigidity
mass ratio is chosen to beEĨ1 /m5EĨ2 /m5EĨ3/10m

5EĨ4/10m52,252 m4
•s22, wherem denotes the mass per u

length of all members. As a result, the first two natural freq
cies of this structure are 2.000 and 5.144 Hz. Furthermo
Rayleigh damping model is assumed, i.e., the damping m
C5aM1bK , whereM andK are the mass and stiffness matric
respectively. In this case, the nominal values of the dampin
efficients ã and b̃ are chosen to be 0.182 s21 and
0.44231023 s so that the damping ratios for the first two mo
are 1.00%.

Three classes of structural models are considered. In
case, independent zero-mean discrete Gaussian white no
used for the prediction-error model, with spectral intensitySn1

50.027 m2
•s23 andSn250.059 m2

•s23 at the two observed d
grees of freedom. In order to have better scaling, the dam
parameters are parametrized as follows:a5f1ã andb5f2b̃.

Model Class 1 (M1) assumes a class of two-story shear bu
ings with nominal interstory stiffnessk̄15 k̄252312EĨ1 /H3. In
order to have better scaling, the stiffness is parameterized a
lows: kj5u j k̄ j , j 51,2. Therefore, the uncertain parameters
u j ,f j , Sn j , j 51,2.

Model Class 2 (M2) assumes the actual class of models
cept that due to modeling error,EI15u1EĨ1 , EI25u2EĨ2 , EI3

50.5u1EĨ3 , andEI450.5u2EĨ4 , where the nominal values we
given earlier. Therefore, the uncertain parameters areu j , f j and
Sn j , j 51,2.

Model Class 3 (M3) assumes thatEI15u1EĨ1 , EI2

5u2EĨ2 , and EI j5u3EĨ j , j 53,4. Therefore, the uncertain p

Table 6. Optimal Natural Frequencies~rad/s! of Building ~Example
3!

Number
of modes v1 v2 v3 v4 v5 v6 v7 v8

Exact 5.789 17.24 28.30 38.73 48.30 56.78 64.00 6
1 6.946 — — — — — — —
2 5.799 20.68 — — — — — —
3 5.814 17.16 33.96 — — — — —
4 5.842 17.18 27.94 43.82 — — — —
5 5.848 17.19 27.97 38.06 50.58 — — —
6 5.849 17.19 27.97 38.09 48.10 56.72 — —
7 5.849 17.19 27.97 38.09 48.13 56.34 64.18
8 5.849 17.19 27.97 38.09 48.13 56.34 64.18 69

sed on Data~Example 3!

4 5 6 7 8

2619 2682 2714 2723 272
269.2 275.9 291.2 2109 2121

2550 2606 2623 2614 26
2.4310232 1.031027 1.0 1.731024 1.331029
es Ba
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rameters areu1 , u2 , u3 , f1 , f2 , Sn1 , and Sn2 . Note that the
true model lies in this set.

The structure is assumed to be excited by a white noise gr
motion, which is not measured. The spectral intensity of
ground motion is taken to beS051.031025 m2

•s23. The dataD
consist of the absolute accelerations with 10% measurement
at the first and second DOFs over a time interval of 100 s, u
a sampling interval of 0.01 s. Identification was performed u
the Bayesian spectral density approach of the section ‘‘Ou
Only Measurements’’ with the same set of data for each o
three classes of models. The number of data pointsN is taken to
be 600 because only the estimated spectrum up to 20.0
used.

The prior distributionsp(uj uMj), j 51,2,3, are assumed to
an independent uniform distribution over the interval~0,2! for u1 ,
u2 ,u3 ,f1 ,f2 and over the interval~0,0.5! m2

•s23 for Sn1 and
Sn2 .

Table 3 shows the optimal parameter values for each cla
models. It is not surprising that bothu1 andu2 in Case 1 are les
than unity because the shear building models assume rigid
but the floors of the actual structure are not rigid. Table 4 sh
the associated natural frequencies with the actual frame an
optimal models. Note that the optimal model inM3 can fit both
frequencies very well since the exact model is in this class. O
other hand,M1 andM2 cannot fit the frequency of the seco
mode as well asM3 . Figs. 5–7 show the estimated spectr
using the measurements~zigzag curve! and the optimal mode
spectrum~smoother curve! for the three classes of models,
spectively. One can see that the optimal model inM2 provides a

Fig. 9. Spectrum estimated directly from measu
better fit to the first mode thanM1 , but it is the opposite for the

JOURNA
second mode. The optimal model inM3 gives excellent matchin
with the estimated spectrum for both modes.

Table 5 shows the values ofP(Mj uD,U) for j 51,2,3, calcu
lated from Eq.~1! using the evidence for each model from Eq.~3!
and equal priorsP(Mj uU)51/3. As expected,P(M3uD,U) is the
largest among the three classes of models because it conta
actual model. On the other hand,P(M1uD,U) is the smallest on
Although the optimal model inM1 gives a better fit for the se
ond mode thanM2 , it does not fit the first mode as well as
optimal model inM2 and the contribution of the first mode to
structural response is one order of magnitude larger than th
ond mode. This implies that althoughM2 has significant mode
ing error for the beams~about 50%!, it is still a better class o
models than the shear building models.

Example 3: Ten-Story Shear Building under Seismic
Excitation

The third example uses response measurements from the te
building shown in Fig. 8. The Bayesian approach is applie
select the optimal number of modes for a linear model. It is
sumed that this building has a uniformly distributed floor m
and story stiffness over its height. The stiffness to mass r
kj /mj , j 51, . . . ,4, arechosen to be 1,500 s22 so that the fun
damental frequency of the building is 0.9213 Hz. Rayleigh da
ing is assumed, i.e., the damping matrixC is given byC5aM
1bK , wherea50.0866 s21 andb50.0009 s, so that the dampi
ratios for the first two modes are 1.00%. The structure is ass
to be subjected to a wideband random ground motion, which

ts and from optimal model with six modes~Example 3!
remen
be adequately modeled as Gaussian white noise with spectral in-
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tensity Sf 050.02 m2
•s23. Note that the matrixT in Eq. ~10! is

equal to the matrix2@m1 ,...,m10#
T in this case. Each model cla

Mj ( j 51,...,8) consists of a linear modal model withj modes an
the uncertain parameters are the natural frequency, damping
and modal participation factor for each mode; and the spe
intensitySn of the prediction error at the observed degree of f
dom.

The dataD consist of the~simulated! absolute accelerations
the top floor with 5% noise added over a time intervalT530 s,
using a sampling intervalDt50.01 s. The added noise is sim
lated using a spectral intensitySn51.9431024 m2

•s23. The
Bayesian spectral density approach of the section ‘‘Output-
Measurements’’ is used for the identification. The number of
pointsN is taken to be 600 because only the estimated spec
up to 20.0 Hz is used.

Independent prior distributions for the parameters are tak
follows: Gaussian distribution for the natural frequencies
mean 5.5(2j 21) rad/s and coefficient of variation 0.05 for thejth
mode. Furthermore, the damping ratios, modal participation
tor, and spectral intensity of the prediction error are assumed
uniformly distributed over the ranges~0,0.05!, ~0,2!, and~0,0.01!
m2

•s23, respectively.
Table 6 shows the optimal natural frequencies for m

classes with one to eight modes. Table 7 shows the values
log likelihood, the log Ockham factor, the log evidence, and
probability of each model class@P(MmuD,U)# for model classe
with one to eight modes (m51, . . .,8), calculated from Eq.~1!
using the evidence for each model from Eq.~3! and equal prior
P(Mj uU)51/8. It implies that using six modes is optimal. Fig
shows the spectrum estimated directly from the data~zigzag
curve! and the optimal model spectrum using six mo
~smoother curve!. One can see that the optimal model using
modes can fit the measured spectrum very well. Furthermor
the six optimal natural frequencies are very close to their ta
values, which is not the case for using two to five modes. It
found that if AIC is used, eight modes is optimal because
penalty term is too small compared to the changing of the
likelihood term in Eq.~7!. On the other hand, if BIC in Eq.~8! is
used, then six modes are optimal, agreeing with the Bay
approach using the evidence for the various modal models.

Conclusion

A Bayesian probabilistic approach for model class selectio
presented and numerical examples are given to illustrate
method. The best class of models is taken to be the one wh
the most plausible based on the data, that is, it possess
largest probability of any of the model classes conditional on
data. This probability depends on the evidence for the model
provided by the data and the user’s choice of prior probab
distribution over the classes of models. The methodology
handle input-output and output-only data for linear and nonli
dynamical systems.
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