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Abstract: A Bayesian probabilistic approach is presented for selecting the most plausible class of models for a structural or mechanical
system within some specified set of model classes, based on system response data. The crux of the approach is to rank the classes
models based on their probabilities conditional on the response data which can be calculated based on Bayes’ theorem and an asymptc
expansion for the evidence for each model class. The approach provides a quantitative expression of a principle of model parsimony c
of Ockham’s razor which in this context can be stated as “simpler models are to be preferred over unnecessarily complicated ones.’
Examples are presented to illustrate the method using a single-degree-of-freedom bilinear hysteretic system, a linear two-story frame, at
a ten-story shear building, all of which are subjected to seismic excitation.
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Introduction explored in system identification. It is obvious that a more com-
plicated model can “fit” the data better than a less complicated
The problem of model identification using dynamic data from a one which has fewer adjustakiencertain parameters. Therefore,
structural or mechanical system is an active area of research inif the optimal model class is chosen by minimizing some norm of
aerospace, civil, and mechanical engineering, because of its im-the error between the output data and the corresponding predic-
portance in model updating, active control, and health/condition tions of the optimal model in each class, the optimal model class
monitoring (Gersch et al. 1976; Beck 1978; Hoshiya and Saito will always be the most complicated one. For example, in modal
1984; Pi and Mickleborough 1989; Hjelmstad et al. 1992; Mot- identification, using a 20-mode model would always be better
tershead and Friswell 1993; Beck and Katafygiotis 1998; Katafy- than using a 10-mode model because the former would fit the data
giotis and Beck 1998; Katafygiotis et al. 1998; Quek et al. 1999; petter, although the improvement might be negligible. This ap-
Sanayei et al. 1999; Shi et al. 2000; Pappa et al. 2000; Vanik proach is therefore likely to lead to overfitting the data. When an
et al. 2000. overfitted model is used for future prediction, it will very likely
The uncertainties in the values of the model parameters can b&ead to poor results because the model will depend too much on
updated using Bayesian inferenceffreys 1961; Box and Tiao  he details of the data, and the noise in the data might have an
1973; Sivia 1996; Jaynes 2002 Bayesian system identification jnortant role in the data fitting. Therefore, in model class selec-
framework has been presented for both linear and nonlinear dy'tion, it is necessary to penalize a complicated model. This point

namic models for the case of measured input and oufpetk . L
" L was also noted for structural mechanics problems by Grigoriu
and Katafygiotis 1998; Katafygiotis et al. 1998; Beck and Au et al. (1979 P y Bng

2002; Yuen and Katafygiotis 200Znd for the case of output- The same point was recognized much earlier by Jeffreys, who

only measurementgKatafygiotis and Yuen 2001; Yuen and S . S .
o . . did pioneering work on the application of Bayesian meth@as-
Katafygiotis 2001; Yuen et al. 2002; Yuen and Beck 2003 freys 196). He pointed out the need for a quantitative expression

The usual approach in system identification is to find the best . .
(optimal) model in a specified class of models, e.g., a class of of the very old.phllosophy expounded by William of OCkhM_
Occam in Latin and known as “Ockham’s razor,” which is

shear building models or a class of bilinear hysteretic models. The - ‘ i
“It is vain to do with more what

more general problem of model class selection has not been wellUghly translated from Latin as _
can be done with fewer{Sivia 1996. In the present context, this

philosophy implies that simpler models are preferable to unnec-
essarily complicated ones, that is, the selected class of models
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1974). This was later modified by Akaik€l976 and by Schwarz mated byp(u|D,U)=p(u|D,M,.s), and it is sufficient to just

(1978. use the best model class for predicting the system behavior.
In recent years, there has been a reappreciation of the work of  The evidence forM; provided by the datd is given by the

Jeffreys on the application of Bayesian meth¢disffreys 196}, theorem of total probability

especially due to the expository publications of Jay(ks/nes

t1_983, 2003. In particular, the Bayesian ap_proach to_model selec- p(D|Mj):f p(D|8;, M;)p(8;|M;)d8;, j=12,... Ny

ion has been further developed by showing thatetielencefor 0

each model class provided by the déteat is, the probability of (2)

getting the data based on the whole model glasgomatically where®; is the parameter vector in a parameter SpquJRNj

enforces a quantitative expression of a principle of model parsi- \hat defines each model i, , the prior PDFp(8;|M,) is speci-

) . . Qivi J
mony or of Ockham's razofGull 1988; Mackay 1992; Sivia  fieq by the user and the likelihood(D|8;, M) is evaluated

1996. There is no need to introduce ad hoc penalty terms as wassjng the methods presented in the next section.
done in some of the earlle_r work on m0(_jel class selection. _ In globally identifiablecases(Beck and Katafygiotis 1998
In this paper, the Bayesian approach is expounded and appliedne ypdatedposterioy PDF for; given a large amount of dafa
to select the most plausible class of dynamic models representlngmay be approximated accurately by a Gaussian distribution, so

a structural or mechanjca! systdfmom within some specified set p(D|M;) can be approximated by using Laplace’s method for
of model classgsby using its response measurements. In the next aoymptotic approximatiotPapadimitriou et al. 1997

section, the model class selection procedure is explained. Then . . ~

two Bayesian system identification techniques are introduced  p(D|M;)~p(D|0;,M;)p(0;|M;)(2m)NiZ[H;(6;)| 22,

using input-output data and output-only data, respectively. Fi- .

nally, illustrative examples are presented using a single-degree- J=12,... Nu ®)
of-freedom bilinear hysteretic system, a linear two-story frame, where N; is the number of uncertain parameters for the model
and a linear ten-story shear building, all of which are subjected to classM;, the optimal parameter vectd is the most probable
seismic excitation. value [it is assumed to maximiz@(6;|D,M;) in the interior

of ©;], and H;(8) is the Hessian matrix of
—In[p(D|0; ,M,)p(8;|M;)] with respect tob; evaluated a®; .

For unidentifiablecases(Beck and Katafygiotis 1998 the evi-
Let D denote the input-output or output-only dynamical data from dencep(D|M;) can be calculated by using an extension of the
a structural or mechanical system. The goal is toDse select ~ asymptotic expansion used in E(B) (Beck and Katafygiotis
the most plausible class of models representing the system out ofl998; Katafygiotis et al. 1998&r by using a Markov chain Monte
Nw given classes of model§t;, Ms, ..., My, . Since probabil- Qarlo S|'mulat|on tgchnlqueBeck and Au.ZOO);Qn Eq.(2). The

ity may be interpreted as a measure of plausibility based on speci-dISCUSSIon here will focus on trgobally identifiablecase.

fied information(Cox 1963, the probability of a class of models The likelihood factorp(D[6;,M;) in Eq. (3) will be higher
conditional on the set of dynamic daRais required. This can be  for those model classe$t; that make the probability of the data

Model Class Selection

obtained by using Bayes’ theorem as follows: D higher, that is, that give a better “fit” to the data. For example,
if the likelihood function is Gaussian, then the highest value of
P (D= PDMAOPMIL) p(D]B, . M;,) will be given by the model class/; that gives the
! p(D|U) smallest least-squares fit to the data. As mentioned earlier, this
ikelihood factor favors model classes with more uncertain pa-
1) likelihood f f del cl ith i

where ('D|M):2NM (D|M; U)P(M;|U) by the theorem of rameters. If the number of data poiisin D is large, the likeli-

R ety 3 o e hood factor will be the dominant one in E¢) b it i
total probability andi/ expresses the user’s judgement on the hood factor will be the dominant one in E(B) because it in-
initial plausibility of the model classes, expressed as a prior prob- créases exponentially with, while the other factors behave as
ability P(M;|4) on the model classe$t;, j=1, ... Ny, where » @S shov.vn. below. . NIs oA 112
E;\':“"lP(MjW):l. The factomp(D| M, ) is called theevidence The remaining factorsp(6;|M;)(2) ™ [H;(6;)| " in Eq.
for the model class\; provided by the dat&. Note thati{ is (3) are called theDckham factorby Gull (1988. The Ockham
irrelevant inp(D|.M; ,¢4) and so it can be dropped in the notation factor represents a penalty against parameterizd(ril 1988;
because it is assumed thatl; alone specifies the probability Mackay _1992, as we demonstrate in the following discussion.
density functionPDP) for the data, that is, it specifies not only a Ve Wish to show that the Ockham factor decreases exponen-
class of deterministic dynamic models but also the probability tially W'th the number 9f uncertain par_ameters in '_[he moqel C|§SS.
descriptions for the prediction error and initial plausibility for For this purpose, consider an alternative expression for it, derived

each model in the classt; (Beck and Katafygiotis 1998Eq. (1) as follows. Itis knowr_l that for a large nunjUﬁrof data pqints in
shows that the most plausible model class is the one that maxi-2» the updatedposterio PDFp(6;|D, M)) is well approximated
mizesp(D|M;) P(M;|U) with respect tg. by a Gaussian PDF with med#) and covariance matrix given by

Note thatP(M;|D,14) can be used not only for selection of the ~ the inverse of the Hessian matii(6;). The principal posterior
most probable class of models, but also for response predictionvariances fo;, denoted bys?; with i=1,2,... N; are there-
based on all the model classes. Letlenote a quantity to be  fore the inverse of the eigenvalues of this Hessian maBack
predicted, e.g., first-story drift. Then the PDFwgiven the data and Katafygiotis 1998 The determinant facthj(ﬂj)|*1’2 in the
D can be calculated from the theorem of total probability as fol- Ockham factor can therefore be expressed as the product of all the
lows: p(u|D,L{)=Z;\‘=""1p(u|D,_/\/lj)P(Mi|D,L{), rather than o;; fori=1,2,... N;. Assume that the prior PDB(0;|M;) is
using only the best model for prediction. However, if the prob- Gaussian with meafmost probable value a prigrd; and a di-
ability P(M el D,U) for the best model class is much larger than agonal covariance  matrix ~ with varian(:eSpfi with
the probability of the others, then the above expression is approxi-i=1,2, ... N;. The logarithm of the Ockham factor for the
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model cIasij , denoted byBj , can therefore be expressed as fs
B;=In[ p(8;| M;)(2m) 2| H;(6;)| ~12]

N; N; ~ —
P ' (ej,i_ej,i ’ @ fyp---=
Pj,i |

ks

Since the prior variances will always be greater than the posterior .-
variances if the data provide any information about the model - k1
parameters in the model cla&ztj , all the terms in the first sum in /4 1
Eq. (4) will be positive and so will the terms in the second sum

unless the posterior most probable vabye just happens to co-
incide with the prior most probable valig ;. Thus, one might
expect that the log Ockham fact@r will decrease if the number

of parameters\; for the model class\{; is increased. This ex-
pectation is confirmed by noting that the posterior variances are
inversely proportional to the number of data poiNts1 D, so the
dependence of the log Ockham factor Mris

®
B3

1
where the remaindeR; depends primarily on the choice of prior ~ Fig. 1. Relationship between restoring force and displacement of
PDF and isO(1) for largeN. It is not difficult to show that this  bilinear hysteretic systerfExample }
result holds for even more general forms of the prior PDF than
the Gaussian PDF used here.

It follows from Bayes’ theorem that we have the exact rela- Comparison with Akaike's Approach
tionship

In the case of Akaike’s information criteriofikaike 1974, the
best model class among the(; for j=1,2, ... Ny, is chosen by
maximizing an objective function AIQY(;|D) overj that is de-

A comparison of this equation and E@) shows that the Ockham fined by

factor is approximately equal to the ratixﬁéj|Mj)/p(ej|D,/\/lj) AIC(M;|D)=In p(Dléj M) =N, (7
which is always less than unity if the data provide any informa-
tion about the model parameters in the model clMsjs Indeed,

P(D|M;)=p(D|6; ,M,)p(8;| M,)/p(6;|D,M;)  (6)

where the log likelihood function is roughly proportional to the
for large N, the negative of the logarithm of this ratio is an number of data point8l in D, while the penalty term is taken to
asymptotic approximation of the information abdyt provided be N;, the number of adjustable parameters in the model class
by dataD (Kullback 1968. Therefore, the log Ockham factg M; . [Akaike actually stated his criterion as minimizirg2(AIC)

removes the amount of information abdytprovided byD from but the equivalent form is more appropriate hevéhen the num-
. N . . ber of data points is large, the first term will dominate. Akaike

frr:?)(;;)'g/;vll‘l)kellhood Inp(D{6; . M;) to give the log evidence (1976 and Schwarz1978 later developed independently another
)

The Ockham factor may also be interpreted as a measure Ofversion of the objective function, denoted BIC, that is defined by
robustness of the model clagg(; . If the updated PDF for the
model parameters for the given model class is very peaked, then
the ratiop(6;|M;)/p(8;|D,M;), and so the Ockham factor, is
very small. But a narrow peak implies that response predictions
using this model class will depend too sensitively on the optimal
parameter®; . Small errors in the parameter estimation will lead
to large errors in the response predictions. Therefore, a class of
models with a small Ockham factor will not be robust to noise in

the data during parameter estimation, that is, during selection of &
the optimal model within the class. s ° \
-

To summarize, in the Bayesian approach to model selection,

0.05 T T
10% EI Centro earthquake

y(t) (m)

the model classes are ranked according(t®| M;) P(M;|U) for 005 s m " 2 > % * )
j=1,... Nu, where the best class of models representing the 005 T T T T T T
20% El Centro earthquake

system is the one which gives the largest value of this quantity. 2
The evidencep(D|M;) may be calculated for each class of mod- = 0 1
els using Eq(3) where the likelihoody(D|6;,M;) is evaluated = ’\\/\/\/\/\/\/\/\/\
using the methods presented in the next section. The prior distri-  -oos} L L m = v .
bution P(Mjlu) over all the model cIasseS/lj =1, ... Nu, t (sec)
must be specified. In this work, a uniform prior distribution is
chosen, leaving the Ockham factor alone to penalize model
classes with increased numbers of parameters.

Fig. 2. Response measurements of oscillator for three levels of
excitation(Example 3
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0.05 T T T T T T T Table 1. Optimal Parameter Values for Each Model Class
10% El Centro earthquake Representing the OscillatgExample 1
g Excitation level Model class ¢ ky ks, Xy o,
= 0 1 10% EI Centro 1 0.0204 1.000 — — 0.0005
= earthquake 2 — 1019 —  UN 0.0013
3 — 1.019 UN UN 0.0013
% . , . \ \ . , 15% EIl Centro 1 0.0902 0.989 — — 0.0020
06 08 00 0 0 00t 002 0B oM earthquake 2 — 10179 — 0.0214 0.0017
3 — 1.001 0.108 0.0197 0.0007
005 T T T T T T T 20% EI Centro 1 0.1928 0.956 — — 0.0098
15% El Centro earthquake earthquake 2 — 09936 — 0.0211 0.0051
—_ 3 — 0.9942 0.0924 0.0200 0.0011
(2
= 0 ]
= Consider a system witiNy degrees of freedoMDOFg and
equation of motion
| 1 | | - .
& TRT— W 0w o Mx +15(X,X;05) =Tf(t) (10)
whereM e RNe*Nd s the mass matrixise RNd is the nonlinear
005 T T T T T T ! restoring force characterized by the structural parametgrst
20% E Centro eanthquake e RNa*Nf s a force distributing matrix, ané(t) e RVt is an ex-
ternal excitation, e.g., force or ground acceleration, which is as-
§ o+ j sumed to be measured.
= Assume now that discrete response data are availabi, at
= (=Ny) observed DOFs. LeAt denote the sampling time step.
Because of measurement noise and modeling error, referred to
006 L L L L L L L hereafter as prediction error, the measured respgfsgpe RNo
000 0% - 00t 0 06t 0 0B 0K (at time t=nAt) will differ from the model responsé yx(n)

z(t) (m) corresponding to the measured degrees of freedom whede-

notes anNgX Ny observation matrix, comprised of zeros and

Fig. 3. Hysteresis loops of oscillator for three levels of excitation ) L i .
ones. Herein, the prediction error is modeled as discrete zero-

(Example 3 . X . N
mean Gaussian white noise vector procgés) e R™0:
. 1 y(n)=Lox(n)+m(n) (11)
BIC(M;[D)=Inp(D|6; . M;j)— 5 N;InN ®) where the discrete procesgsatisfies
where now the penalty term increases with the number of data E[n(n)nT(p)]=2n8np (12)
pointsN.

whereE[ - ] denotes expectatiod,,, denotes the Kronecker delta
function, andX, denotes theNyX N, covariance matrix of the
prediction error process.
In p(p|Mj)k|n p(1)|éj M;)+B; (9) _ Let 6 denote the parameter vector for identification. It may
include the following parametergl) The structural parameters
0,; (2) parameters defining the structural mass distributi@;
the elements of the force distributing matix and (4) the ele-
ments of the upper right triangular part of the prediction-error
covariance matrix.,, (symmetry defines the lower triangular part
of this matrix. Herein, it is assumed that the mass distribution
can be modeled sufficiently accurately from structural drawings
Model Updating Using a Bayesian Framework and so it is not part of the model parameters to be identified.
Let the dynamic dat® consist of the measured time histories
A general Bayesian framework for structural model updating was at N discrete times of the excitation and observed response. If the
proposed inBeck and Katafygiotis 19981t was originally pre-  covariance matrix for the prediction errorsXg=o? 1y, imply-

sented using input-output measurements but it was recently ex-ng equal variances and stochastic independence for the predic-
tended for output-only measuremen(<atafygiotis and Yuen

2001; Yuen and Katafygiotis 2001; Yuen et al. 2002; Yuen and
Beck 2003. In this section, two of these methods are presented
for input-output data and for output-only data, respectively.

BIC can be compared directly with the logarithm of the evi-
dence from Eq(3)

where the logarithm of the Ockham facfy is given by Eq(5).
This shows that for larghl, the BIC agrees with the leading order
terms in the logarithm of the evidence and so in this case it is
equivalent to the Bayesian approach using equal priors for all of
the P(M;|2).

Table 2. Probabilities of Different Model Classes Based on Data

(Example )
Input-Output Measurements Excitation level P(M{DU) P(My|DU) P(Ms|D,U)
0, — 1217 — 1217
In this section, a Bayesian approach for linear/nonlinear model 1(5); E: gentro eartEquaEe 4)(4101;374 3 23;?18,957 3'1X11%
updating using input-output measurements is presented. For de:>" entro earinquake 2303 ¢ - 1609 '
tails, see Beck and Katafygiotia998. 20% EI Centro earthquake 6x4L0 5.7x 10 1.0
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zs5(t) z6(t) 2o(1 Table 3. Optimal Parameter Values for Each Model Class
< 3 2(?) Representing the Structural Frarfiexample 2

(EI)4
Parameter ¢4 o 0, 0, 03 Sh1 Sho
Class 1 1131 1.007 0913 0879 — 0.158 0.159
(EI), (EX)q Class 2 1.057 1536 1.130 1.130 —  0.150 0.063
Class 3 1.027 1.093 0.988 1.001 1.024 0.085 0.080
2 Ts(t) X7 @) _z.(t)
(EI)s Si(w)=Si(w;0y) (15)

Assume response data are availableNatliscrete times for
No (=Ny) observed DOFs with prediction error modeled as in
(EI), (EI), Egs.(11) and(12).

Let ® denote the parameter vector for identification. It may
include the following parameter$l) The structural parameters
0.; (2) the excitation parametefs ; and(3) the elements of the
upper right triangular part of the prediction-error covariance ma-
— I, (t) tr!x)E“ (symmetry defines the lower triangular part of this ma-
trix).

Fig. 4. Linear two-story structural framégExample 2

Spectral Density Estimator and Its Statistical Properties
Consider the stochastic vector procgéy and a finite number of
discrete dataYy={y(n),n=1, ... N}. Based onY,, we intro-
duce the following discrete estimator of the spectral density ma-
trix of the stochastic procesgt):

tion errors for different channels of measurements, then the up-
dated PDF of the model parametérgiven the dat&> and model
classM may be expressed as

p(9|D,M):Clp(9|./\/l)(21T)7NN0/20‘7NNO Sy,N(wk):,VN(wk),/’_‘-lr\j(wk) (16)
b wherez denotes the complex conjugate of a complex variable
NNg andy (o) denotes the¢scaled discrete Fourier transform of the
xexp — 5 J1(6]D, M) (13) vector procesy at frequencyw,, as follows:
n
N—-1

wherec, is a normalizing constant anm{0| M) is the prior PDF

of the model parametes expressing the user’s judgement about
the relative plausibility of the values of the model parameters
before the data are used. The objective functig(®|D, M) is
given by

0=\ gy 2 y(meinst (17)

where w,=kAw, k=0,...N;—1 with N;=INT[(N+1)/2],
Aw=27/T, andT=NAt.

Using Eq.(11) and taking the expectation of E(L6) (noting
thatx andn are taken as stochastically independglstields

E[Sy n(wi)|0]=LoE[ Sy n(@)|0]L§+E[Syn(w)]  (18)

wherex(kAt;0,M) is the calculated response based on the as- whereS \(wy) andS, () are defined in a manner similar to

sumed class of models and the parameter vettohile y(kAt) that described by Eq$16) and (17). It easily follows from Egs.
is the measured response at tikgt. Furthermore|-|| denotes (12) and (16) that

the Euclidean norm of a vector. The most probable model param- A
eters0 are obtained by maximizing(0|D, M) in Eq. (13). For E[Syn(00)]= _tz =S,0 (19)
largeN, this is equivalent to minimizing(8|D, M) in Eq. (14) ’ 2m N

over all parameters i@ that it depends on, because this factor The terme[S, \(w,)|0] in Eq. (18) can also be easily calculated
dominates in Eq(13). The most probable value of the prediction-  y noting thatS, (o) has elements

error variance irf is &f]=min J1(0|D, M). In the globally iden- N—1

tifiable case(Beck and Katafygiotis 1998 it turns out that (. _ t ' “iw(n—p)At
p(8|D, M) is well approximated by a Gaussian distribution with N(@0= 50y npzzo Xj(nx(p)e- e (20)

mean® and covariance matrix equal to the inverse of the Hessian
of —In[p(6|D, M)] at 0.

N
1
J1<e|D,M>=N—M)k21 ILoX(KAL;0, M) —y(KAD)||2 (14)

Grouping together terms having the same valuepot () in Eq.
(20) and taking the expectation we obtain the following expres-
sion:

Output-Only Measurements N—1

In this section, a Bayesian approach for linear/nonlinear model E[SU{(0)]= TN > Ya[RED(nApe ionat
updating using output measurements is presented. For details, see n=0
Katafygiotis and Yuer{2001) and Yuen and Beck2003.

Consider the same equation of motion as in @€). However,
now the external excitatiof(t) e RNf is modeled by a Gaussian ~ wherew, is given byy,=N andy,=2(N—n), n=1. R{"" are
process with zero mean and a spectral density matrix functionthe cross-correlation functions between jtreandlth component
characterized by the excitation paramet@rs of the responsg&. However, it is usually not possible to obtain the

+R§j‘|)(—nAt)ei°’knAt] (21)
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Table 4. Natural Frequencie¢in Hz) of Optimal Model in Each
Class(Example 2

Mode 1 2

Actual 2.000 5.144
Class 1 2.048 5.009
Class 2 2.000 5.323
Class 3 1.995 5.142

correlation functions theoretically for nonlinear systems. In this

case, we can generate samples of the response and hence samplg
of their spectral density estimators. Then, the expected values o
the spectral estimates can be approximated by the average of th

spectral density estimators obtained from the samples.

Assume that there is a set of independent, identically distrib-

uted, time historie&r(’,....Y(™ . As N—, the corresponding
discrete Fourier transforms{]’(w,), n=1,... M are indepen-
dent and follow an identical compled,-variate normal distribu-
tion with zero mean. Then, iIM=N,, according to Krishnaiah
(1976, the average spectral density estimate

M

2 S <mk>—f

“”(o)k)/N) (o)
(22)

follows a central complex Wishart distribution of dimensiNg
with M DOFs and meaiE[ S)'(wy)]. The PDF of this distribu-
tion is given by

N(‘Dk)—

.1

10 3 L1 L}
1%t DOF
1072} 1
|
!
107} 1
1
i
~~
=
—~ 4L | .
ﬁ“210

2
f (Hz)

|SD{|N(UJK)|M7NO
[E[S, n(@) 1M

X exp(— M tr{E['S, y(00] 2 (@))
(23)

(S (@) =Co

where c,=M M =N~ N(Ng— 1)’2/[Hg§ (M=p)!] is a normaliz-

ing constant, andA| and tfA] denote the determinant and the

trace, respectively, of a matrik. Note that this approximation is

very accurate for larg®\ even if y(nAt), n=1,... N, is not

Gau35|an This is due to the robustness of the probablllty distri-
ition of the discrete Fourier transform with respect to the prob-

gblllty distribution of the response signal.

Furthermore, it can be shown that whiR-, the complex
vectorsyy(wy) andyy(w;) are independent fdk#1 (Yuen et al.
2002. As a result, the matriceS}/(w,) and S)'\(w) are inde-
pendently Wishart distributed fde 1, that is

PLSN(@1), S'\(@)]=PLS (@) IPLS(@))]

Although Egs.(23) and (24) are correct only asymptotically as
N—o, it was shown by simulations that these are indeed very
accurate approximations in a certain bandwidth of frequencies for
the case wherd\ is finite but large(Yuen 2002. In the case of
displacementsor accelerations this frequency bandwidth corre-
sponds to the lowefor highey frequency range, e[ w;,wg] (or

Wy ,le,l) for some cutoff frequencwy . The frequency range

increases as the level of prediction error increases.

(24)
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Fig. 5. Spectra estimated directly from measurements and from optimal model in Model Clegartple 2
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Identification Based on Spectral Density Estimates

The most probable parameteﬁsare obtained by minimizing

Based on the above discussion regarding the statistical propertieshe objective functionl,(0) = — In[p(GIM)p(é{\,",’\,Kw,M)]. Fur-

of the average spectral estima@bf,\,(mk), a Bayesian approach
for updating the PDF of the uncertain parameter vetes pro-
posed as follows. GiveM =N, independent sets of observed
dataD={Y{" ,n=1, ... M}, one may calculate the correspond-
ing observed spectral estimate matri&®,,n=1,... M using
Egs. (16) and (17). Next, one can calculate the average matrix
estimatesS)'(wy) using Eq.(22) and then form the se®)'y
={S§’fN(kAm),k=l, ... K}. Using Bayes’ theorem, the updated
PDF of the model parametebsgiven the dates)'\ is then given
by

p(0|D, M) ~p(O|S, M) = cop(8] M)p(S)'|6, M)

(25)
wherec, is a normalizing constant such that the integral on the
right hand side of Eq(25) over the domain 06 is equal to 1. The
factor p(0| M) in the above equation represents the prior PDF,
which expresses the relative plausibilities of different value8 of
based on prior information and engineering judgment. The likeli-
hood p(S{/"fNK|0,M) expresses the contribution of the measured
data. Based on Eq&3) and(24), the likelihood can be expressed
as follows:

Koon _
R |S€IAN(‘DK)‘M "o
M, K 0, M :CK T —
P(Syw | ) Ok1:[1 |E[S (@) M

X exp(— M tr{E[S, n(w) ]~ )\ (@1)})
(26)

thermore, the updated POR 0| D, M) can be well approximated
by a Gaussian distribution centered at the optimal p@iift0 is
globally identifiable. The covariance matr¥, is equal to the
inverse of the Hessian of the functidp(0) evaluated ab=0.
This property provides a very efficient way for the quantification
of the uncertainty for the model parameters without evaluating
high dimensional integrals.

lllustrative Examples

Example 1: Single-Degree-of-Freedom Nonlinear
Oscillator under Seismic Excitation

In this example, a bilinear hysteretic oscillator with linear viscous
damping is considered

mx+cx+ fp(x;ky,ka,xy) =f(t) 27)

where m=mass; c=damping coefficient; and
fn(x;kq,kz,Xxy) =hysteretic restoring force, whose behavior is
shown in Fig. 1. Herem=1 kg is assumed known. The param-
eters 0=[C,k;,k, X,]" used to generate the data ai@
=0.02 N-s/m, k;=1.0 N/m, k,=0.1 N/m, X,=0.02 m, which
gives a small-amplitude natural frequency of 4/&z.

The oscillator is assumed to be excited by 10, 15, and 20%
scaling of the 1940 EIl Centro earthquake record. The duration of
measurement i =40s with sampling frequency 60 Hz, so that
the number of data points iN=2,400. It is assumed that the
earthquake excitation and response displacement are measured to
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give the dataD where 5% rms noise is imposed on the structural Table 1 shows the optimal parameter values for each class of
response measurements, i.e., the measurement noise is 5% of th@odels for the three levels of excitation using the method pre-
rms of the noise-free response. Fig. 2 shows the measurements fosented in the section “Input-Output Measurements.” “UN” indi-
the three levels of excitation and Fig. 3 shows the correspondingcates that the parameter is unidentifiable. For example\in
hysteresis loops. It can be seen that the oscillator behaved linearlyyith 10% El Centro earthquake,, is unidentifiable because the
(did not yield when subjected to 10% of the EIl Centro earth- oscillator behaves perfectly linearlfig. 3. In fact, the optimal
quake record. Three classes of models are considered. They alharameter values fatM, are very close to their target values at
use zero-mean Gaussian discrete white noise as the predictiongnis |evel of excitation. For higher levels of excitation, the optimal
error model. o _ _ _ _linear model inM; has lower stiffness and higher values of its
_ Model Class 1 {M,): Linear oscillators with damping coeffi-  455ing coefficient to represent the increased flexibility and en-
cient c>0, stiffness parametédq; >0, and prediction-error stan- ergy dissipation due to yielding
dard deviationr, . . . . . Table 2 shows the values &(M;|D,U), j=1,2,3, for the
Model Class 2 {M,): Elastoplastic oscillators, i.e., bilinear - .
. L ) ) L three levels of excitation that are calculated from @&gusing the
hysteretic but withk,= 0, with stiffness parametds, >0, yielding . .
2 o . evidence for each model from Eq3) and equal priors
level Xy and prediction-error standard dewaﬂoq, and no vis- )
cous damping. P(M;|U)=1/3. Note that in all three cases the model classes
other than the most probable model class have essentially zero

Model Class 3 {M;): Bilinear hysteretic oscillators with o . .
preyield stiffnessk,>0, postyielding stiffness,>0, yielding probability, implying that these model classes can be discarded
for response prediction. In the case of 10% scaling of the El

levelx, and prediction-error standard deviatien . Note that this o . .
class of models does not include the exact model since linearCeNtro earthquake record, it is not surprising tRai\1,|D,1) is
viscous damping is not included. the largest since the oscillator behaves lineéig. 3). However,
Independent uniform prior distributions are assumed for the for higher levels of excitationP(Ms|D,) is the largest. Al-
parameters, Ky, Ky, X,, ando, over the range0,0.5 N-s/m, though M3 does not include linear viscous damping, the hyster-
(0,2 N/m, (0,0.5 N/m, (0,0.) m, and(0,0.0) m, respectively. etic behavior can be captured well by this model. More interest-
ingly, M, outperforms. M, at these two levels of excitation.
Although M, cannot capture the viscous damping mechanism,
Table 5. Probabilities of Different Model Classes Based on Data the energy dissipated by the hysteretic behavior for 15 and 20%

(Example 2 scaling of the El Centro earthquake record is much more signifi-
P(M4|D,U) P(M,|D,U) P(M,|D.U) cant than the contribution from the viscous damping, as can be

~ ~ seen by the large increase in the optimal damping ratio for the
2.6x10° % 1.7x10° 1 1.0

corresponding “equivalent” linear system®t, in Table 1. Fur-
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y(t) Table 6. Optimal Natural Frequencigsad/9 of Building (Example

i -
— ]’I Number
k1o CIOI—‘ ofmodes w; ©, w3 w; @5 w5 w7 g
J }J Exact 5.789 17.24 2830 38.73 48.30 56.78 64.00 69.79
— 1 6.946 — — — — — — —
ks @F 2 5799 2068 — — — — — —
J 3 5814 17.16 33.96 — — — — —
_ ]j 4 5.842 17.18 27.94 4382 — — — —
ks CB,_i 5 5848 17.19 27.97 38.06 5058 — @— @ —
6 5.849 17.19 27.97 38.09 4810 56.72 — —
J ]J 7 5.849 17.19 27.97 38.09 48.13 56.34 64.18 —
[ P ] 8 5.849 17.19 27.97 38.09 48.13 56.34 64.18 69.41
7 7
— J —l:lJ Example 2: Linear Two-Story Frame under Seismic
ke cs Excitation
J :}J The second example refers to a 6-DOF two-story structural frame
— — with story heightH=2.5 m and widthW=4.0 m, as shown in
ks cs Fig. 4. All the chosen model classes are linear. All members are
assumed to be rigid in their axial direction. For each member, the
. J __ﬂ_' mass is uniformly distributed along its length. The rigidity-to-
ks ¢ mass ratio is chosen to beE\fl/mzazlm=E3/1&n
=a4/10m=2,252 nt-s2, wherem denotes the mass per unit
N J _ﬂj length of all members. As a result, the first two natural frequen-
ks cs cies of this structure are 2.000 and 5.144 Hz. Furthermore, a
Rayleigh damping model is assumed, i.e., the damping matrix
_I ]J C=aM+BK, whereM andK are the mass and stiffness matrices,
— — respectively. In this case, the nominal values of the damping co-
ky ¢ efficients @ and B are chosen to be 0.182° % and
_, 0.442< 10 3s so that the damping ratios for the first two modes
! _HJ are 1.00%.
b oo Three classes of structural models are considered. In each
case, independent zero-mean discrete Gaussian white noise is
< 0 used for the prediction-error model, with spectral intenSty
=0.027nt-s 2 andS,,=0.059 nt- s~ 2 at the two observed de-
Fig. 8. Ten-story shear buildingExample 3 grees of freedom. In order to have better scaling, the ~olamping

parameters are parametrized as follows: ¢, and B =d,p.
Model Class 1 {M;) assumes a class of two- story shear build-

_ _ _ ings with nominal interstory stiffneds, =k,=2X 12EI /H3. In
thermore, the restoring force behavior férl, is more correct  order to have better scaling, the stiffness is parameterlzed as fol-

than for M, , although it is still not exact. - lows: k;=60;k;, j=1,2. Therefore, the uncertain parameters are
This example illustrates an important point in system identifi- 4. by Sujii=

cation. In reality, there is no exact class of models for a real _ j,ModeI Class 2 (M,) assumes the actual class of models ex-
structure and the bes_t c_Iass depends on the system data_ that '@ept that due to modeling errcEIlzelal, EI2=6252, El,
used. Response predictions should only be made for excitation ~ ~ -

levels that do not differ greatly from those used in the system —0-%1Els, andEl,=0.5,El,, where the nominal values were
identification. If we wish to select between the linear models 9ven earlier. Therefore, the uncertain parametersiareb; and

(M;) and the elastoplastic models without viscous damping Snjr =12,
(M,), then M, is better for high levels of excitation whiléA, Model Class 3 (M) assumes thatEl;=6, El,, El
is better for lower levels of excitation. =0 EI2, and El; —93EIJ, j=3,4. Therefore, the uncertain pa-

Table 7. Probabilities of Models with Different Numbers of Modes Based on DEteample 3

Number of modesn 1 2 3 4 5 6 7 8

In likelihood 1894 2251 2511 2619 2682 2714 2723 2723
In Ockham factor —-43.7 -56.4 —-68.9 -69.2 -75.9 -91.2 —-109 -121

In evidence 1850 2195 2442 2550 2606 2623 2614 2602
P(Mm|D.U) 3.0x 10 3¢ 2.2x 10188 6.4x10°7° 2.4x10 % 1.0x10°7 1.0 1.7x10°4 1.3x107°
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Fig. 9. Spectrum estimated directly from measurements and from optimal model with six rfixasple 3

rameters ard,, 0,, 03, &1, dp, Sy1, andS,,. Note that the  second mode. The optimal model.M; gives excellent matching
true model lies in this set. with the estimated spectrum for both modes.

The structure is assumed to be excited by a white noise ground  Taple 5 shows the values (M, |D,U) for j=1,2,3, calcu-
motion, which is not measured. The spectral intensity of the |ated from Eq(1) using the ewdence for each model from E3).
ground motion is taken to b&=1.0x10"°m?.s"*. The dataD and equal prior® (M;|1) = 1/3. As expected?(M;|D,U) is the
consist of the absolute accelerations with 10% measurement nOlSeargest among the three classes of models because it contains the
at the first and second DOFs over a time interval of 100 s, using actual model. On the other harfl{ M| D,{) is the smallest one.

a sampling interval of 0.01 s. Identification was performed using Although the optimal model in\{; gives a better fit for the sec-
the Bayesian spectral density approach of the section “Output- ond mode than\,, it does not fit the first mode as well as the
Only Measurements” with the same set of data for each of the optimal model inM, and the contribution of the first mode to the
three classes of models. The number of data pdihis taken to structural response is one order of magnitude larger than the sec-
be 600 because only the estimated spectrum up to 20.0 Hz isond mode. This implies that althought, has significant model-
used. ing error for the beamgabout 50%, it is still a better class of

The prior distributiong(8;| M;), j=1,2,3, are assumed to be  models than the shear building models.
an independent uniform distribution over the inter(@&P) for 64,
0,,05,41,4, and over the interva(0,0.9 m?.s 2 for S,; and
Sz

Table 3 shows the optimal parameter values for each class of
models. It is not surprising that both and#, in Case 1 are less  The third example uses response measurements from the ten-story
than unity because the shear building models assume rigid floorsbuilding shown in Fig. 8. The Bayesian approach is applied to
but the floors of the actual structure are not rigid. Table 4 shows select the optimal number of modes for a linear model. It is as-
the associated natural frequencies with the actual frame and thesumed that this building has a uniformly distributed floor mass
optimal models. Note that the optimal model A, can fit both and story stiffness over its height. The stiffness to mass ratios
frequencies very well since the exact model is in this class. On thek. j/mj, j=1,...,4, arechosen to be 1,500 $ so that the fun-
other hand,M,; and M, cannot fit the frequency of the second damental frequency of the building is 0.9213 Hz. Rayleigh damp-
mode as well asM;. Figs. 5—7 show the estimated spectrum ing is assumed, i.e., the damping mat@xis given by C=aM
using the measurementgigzag curvg¢ and the optimal model +BK, wherea=0.0866 s andf=0.0009 s, so that the damping
spectrum(smoother curvefor the three classes of models, re- ratios for the first two modes are 1.00%. The structure is assumed
spectively. One can see that the optimal modeM3 provides a to be subjected to a wideband random ground motion, which can
better fit to the first mode thant,, but it is the opposite for the  be adequately modeled as Gaussian white noise with spectral in-

Example 3: Ten-Story Shear Building under Seismic
Excitation
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tensity S;,=0.02 n-s °. Note that the matrixI in Eq. (10) is Technology, Earthquake Engineering Research Laboratory, Pasadena,
equal to the matrix-[my,...,myo]" in this case. Each model class Calif. , _
M,— (j=1,...,.8) consists of a linear modal model wjtmodes and Beck, J. L., an.d Au S. I_((.2002). “Bayesnam updating of strl_Jctura[ mod-
the uncertain parameters are the natural frequency, damping ratio Srslgarllﬂde::‘;"alt;gz) ”;g‘g I;/I;lrkov Chain Monte Carlo simulatiod.
gnd ”?Oda' partICIpatlc')n.faCtor for each mode; and the spectral Beck, J. L., and Katafygiotis, L. $1998. “Updating models and their
intensity S, of the prediction error at the observed degree of free- L i . o )
dom uncertainties. |: Bayesian statistical frameworkl” Eng. Mech.,
) . . . 124(4), 455-461.
The dataD consist of thgsimulated absolute accelerations at 44

A ! - ) Box, G. E. P., and Jenkins, G. NiL970. Time series analysis, forecast-
the top floor with 5% noise added over a time interVat 30 s, ing and contro} Holden-Day, San Francisco.

using a sampling intervaht=0.01s. The added noise is simu- oy G. E. P,, and Tiao, G. G1973. Bayesian inference in statistical
Iated USIng a SpeCtI‘a| IntenSI@n=194>< 10_4 m2~S_3. The ana|ysis Addision_Wes|ey’ Reading’ Mass.
Bayesian spectral density approach of the section “Output-Only Cox, R. T.(1961). The algebra of probable inferencdohns Hopkins
Measurements” is used for the identification. The number of data  University Press, Baltimore.
pointsN is taken to be 600 because only the estimated spectrumGersch, W., Taoka, G. T., and Liu, RL976. “Structural system param-
up to 20.0 Hz is used. eter estimation by two-stage least squares methddEng. Mech.,
Independent prior distributions for the parameters are taken as  1025), 883—-899.
follows: Gaussian distribution for the natural frequencies with Grigoriu, M., Cornell, C., and Veneziano, DL979. “Probabilistic mod-
mean 5.5(2— 1) rad/s and coefficient of variation 0.05 for tjike elling as decision making.J. Eng. Mech. Div.1054), 585-596.
mode. Furthermore, the damping ratios, modal participation fac- Gull, S. F. (1988. “Bayesian inductive inference and maximum en-
tor, and spectral intensity of the prediction error are assumed to be ~ FOPY.” Maximum entropy and Bayesian methodlsSkilling, ed., Klu-
uniformly distributed over the range8,0.05, (0,2), and(0,0.0 _ wer, Boston, 53-74. ) _
m2.s3, respectively. Hjelmstad, K.tla.,dv;/ood, S. L.,tand ?Iarl:_, S._(JQ?Z.t M;t;i;ll retsgual
. : energy method for parameter estimation in structurdsStruct. Eng.,
| Table ('SthShOWtS thehtoptlrgal n_?tlkJ)lraIYfrT]quenal]es f(I)r monf:lztatl] 11811) 223242,
classes with one to eight modes. fable / shows he values o oshiya, M., and Saito, E1984. “Structural identification by extended
log likelihood, the log Ockham factor, the log evidence, and the

- Kalman filter.” J. Eng. Mech.110(12), 1757-1770.
probability of each model clag$ (M| D,14) ] for model classes Jaynes, E. T(1983. Papers on probability statistics and statistical phys-

with one to eight modesng=1, .. .,8), calculated from Eq(1) ics, R. Rosenkrantz, ed., Reidel, Dordrecht, The Netherlands.
using the evidence for each model from E8). and equal priors Jaynes, E. T.(2003. Probability theory: The logic of sciengel.
P(M;|t)=1/8. It implies that using six modes is optimal. Fig. 9 Bretthorst, ed., Cambridge University Press, Cambridge, U.K.
shows the spectrum estimated directly from the datgzag Jeffreys, H.(1961). Theory of probability 3rd Ed., Clarendon, Oxford,
curve and the optimal model spectrum using six modes U.K.

(smoother curve One can see that the optimal model using six Katafygiotis, L. S., and Beck, J. L1998. “Updating models and their
modes can fit the measured spectrum very well. Furthermore, all  uncertainties. Il: Model identifiability.”J. Eng. Mech.124(4), 463—
the six optimal natural frequencies are very close to their target  467.

values, which is not the case for using two to five modes. It was Katafygiotis, L. S., Papadimitriou, C., and Lam, H.(E998. “A proba-
found that if AIC is used, eight modes is optimal because the  bilistic approach to structural model updatingbil Dyn. Earthquake
penalty term is too small compared to the changing of the log ~ ENg.17(7-8), 495-507. ) _ _
likelihood term in Eq.(7). On the other hand, if BIC in Ed8) is Katafygiotis, L. S., and Yuen, K.-M2001. “Bayesian spectral density
used, then six modes are optimal, agreeing with the Bayesian approach for modal updating using ambient dataatthquake Eng.

. . . Struct. Dyn.,30(8), 1103-1123.
approach using the evidence for the various modal models. . ;
P 9 Krishnaiah, P. R(1976. “Some recent developments on complex mul-

tivariate distributions.”J. Multivariate Anal.,6, 1-30.
. Kullback, S.(1968. Information theory and statisticDover, Mineola,
Conclusion NLY.
Mackay, D. J. C(1992. “Bayesian interpolation.’"Neural Comput.4(3),
415-447.
Mottershead, J. E., and Friswell, M.(L993. “Model updating in struc-
tural dynamics, a survey.J. Sound Vib.167, 347-375.

A Bayesian probabilistic approach for model class selection is
presented and numerical examples are given to illustrate the
method. The best class of models is taken to be the one which is
the most plausible based on the data, that is, it possesses th e -
largest ro%ability of any of the model classes condli?ional on the Eapadlmlmoq' C.. Beck, J. L. and Kafygiotis, L. $1999).

P o . “Asymptotic expansions for reliability and moments of uncertain sys-
data. This probability depends on the evidence for the model class tems.”J. Eng. Mech.12312), 1219-1229.
provided by the data and the user’s choice of prior probability pappa R. s, Doebling, S. W_" and Kholwad, T. @000. “On-line

distribution over the classes of models. The methodology can  gatabase of vibration-based damage detection experimentSund
handle input-output and output-only data for linear and nonlinear  vip_, 34(1), 28—33.

dynamical systems. Pi, Y. L., and Mickleborough, N. C(1989. “Modal identification of
vibrating structures using ARMA model.J. Eng. Mech.,11510),
2232-2250.
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