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SUMMARY

A reliability-based output feedback control methodology is presented for controlling the dynamic re-
sponse of systems that are represented by linear state-space models. The design criterion is based on
a robust failure probability for the system. This criterion provides robustness for the controlled system
by considering a probability distribution over a set of possible system models with a stochastic model
of the excitation so that robust performance is expected. The control command signal can be calculated
using incomplete response measurements at previous time steps without requiring state estimation. Ex-
amples of robust structural control using an active mass driver on a shear building model and on a
benchmark structure are presented to illustrate the proposed method. Copyright ? 2003 John Wiley &
Sons, Ltd.

KEY WORDS: benchmark control problem; robust control; robust failure probability; robust reliability;
stochastic control; structural control

1. INTRODUCTION

Because complete information about a dynamical system and its environment are never avail-
able, the system and excitation cannot be modelled exactly. Classical control design methods
based on a single nominal model of the system may fail to create a control system that pro-
vides satisfactory performance. Robust control methods (e.g. H2, H∞ and �-synthesis, etc.)
were therefore proposed so that the optimal controller can provide robust performance and
stability for a set of ‘possible’ models of the system [1; 2]. In a probabilistic robust control
approach, an additional ‘dimension’ is introduced by using probabilistic descriptions of all the
possible models when selecting the controller to achieve optimal performance. These prob-
ability distributions give a measure of how plausible the possible parameter values are, and
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they may be obtained from engineering judgement or Bayesian system identi�cation methods
[3–5].
Over the last decade or so, there has been increasing interest in probabilistic, or stochastic,

robust control theory. Monte Carlo simulations methods have been used to synthesize and
analyze controllers for uncertain systems [6; 7]. In References [8–11], �rst- and second-order
reliability methods were incorporated to compute the probable performance of linear-quadratic-
regulator controllers (LQR). On the other hand, an e�cient asymptotic expansion [12] was
used to approximate the probability integrals that are needed to determine the optimal param-
eters for a passive tuned mass damper [13] and the optimal gains for an active mass driver
[14] for robust structural control. In Reference [14], the proposed controller feeds back out-
put measurements at the current time only, where the output corresponds to certain response
quantities that need not be the full state vector of the system. However, there is additional in-
formation from past output measurements which may improve the performance of the control
system.
In this paper, the reliability-based methodology proposed in Reference [14] is extended to

allow feedback of the output (partial state) measurements at previous time steps. It is noted
that in traditional linear-quadratic-Gaussian (LQG) control with partial state measurements,
the optimal controller can be achieved by estimating the full state using a Kalman �lter
combined with the optimal LQG controller for full state feedback. However, in our case the
separation principle does not apply and no state estimation is needed. The method presented
for reliability-based robust control design may be applied to any system represented by linear
state-space models but the focus here is on robust control of structures [15–17].
In Section 2, an augmented vector formulation is presented for treating the output history

feedback. Then, the statistical properties of the response quantities are calculated using the
Lyapunov equation in discrete form. In Section 3, the robust control method is introduced
which is based on choosing the feedback gains to minimize the robust failure probability [18].
In Section 4, examples using a shear building model and a benchmark structure are given to
illustrate the proposed approach.

2. STOCHASTIC RESPONSE ANALYSIS FOR CONTROLLER DESIGN

For the purpose of designing a controller for a structure and control system, a model of the
structural behavior must �rst be formulated. Suppose it is a linear model with Nd degrees-of-
freedom (DOFs) and equation of motion

M(�s) �x(t) +C(�s)ẋ(t) +K(�s)x(t)=T · f(t) + Tc · fc(t) (1)

where M(�s), C(�s) and K(�s) are the Nd ×Nd mass, damping and sti�ness matrix, respec-
tively, parameterized by the structural parameters �s of the system; f(t)∈RNf and fc(t)∈RNfc
are the external excitation and control force vector, respectively, and T∈RNd×Nf and Tc ∈
RNd×Nfc are their distribution matrices. A control law is to be chosen to determine fc by
feedback of the measured output.
The uncertain future excitation f(t) could be earthquake ground motions or wind forces, for

example, and it is modelled by a zero-mean stationary �ltered white-noise process described
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by

ẇf(t) =Awf(�f)wf(t) + Bwf(�f)w(t)

f(t) =Cwf(�f)wf(t)
(2)

where w(t)∈RNw is a Gaussian white-noise process with zero mean and unit spectral intensity
matrix; wf(t)∈RNwf is an internal �lter state and Awf(�f)∈RNwf×Nwf , Bwf(�f)∈RNwf×Nw and
Cwf(�f)∈RNf×Nwf are the parameterized �lter matrices governing the properties of the �ltered
white noise. A vector � is introduced, which combines the structural parameter vector and the
excitation parameter vector, i.e. �=[�Ts ; �

T
f]
T ∈RNs . The dependence on � will be left implicit

hereafter in this section.
Denote the state vector as: y(t)= [x(t)T; ẋ(t)T]T. Equation (1) can be rewritten in the state-

space form as follows:

ẏ(t)=Ayy(t) + Byf(t) + Bycfc(t) (3)

where Ay=
[
0Nd×Nd INd
−M−1K −M−1C

]
, By=

[
0Nd×Nf

M−1T

]
and Byc =

[
0Nd×Nfc

M−1Tc

]
. Here, 0a×b and Ia denote

the a× b zero and a× a identity matrix, respectively.
In order to allow modelling of the sensor and actuator dynamics of the control system, and

to allow more choices of the output to be fed back or to be controlled, an additional state
vector yf ∈RNyf is introduced whose dynamics are modelled by the following equation:

ẏf(t)=Ayfyf(t) + Byfy(t) + Bywwf(t) + Byuu(t) (4)

where Ayf ∈RNyf×Nyf , Byf ∈RNyf×2Nd , Byw ∈RNyf×Nwf , Byu ∈RNyf×Nu are the matrices that char-
acterize the sensor and actuator dynamics and u(t)∈RNu is the control command signal to be
speci�ed by a control law.
When Equation (4) is used to include a linear model of the actuator dynamics, the actuator

forces are given by

fc(t)=Cyfyf(t) (5)

For example, hydraulic actuators may be modelled using a �rst-order di�erential
equation [19]:

ḟc =Affc + Bfẋa + Bfuu (6)

where fc is the control force applied by the actuator; ẋa is the actuator velocity; u is the
signal given to the actuator; and Af, Bf and Bfu are given by

Af= − 2�ka
V
; Bf= − 2�A2

V
; Bfu=

2�Akq
V

(7)

where � is the bulk modulus of the �uid; ka and kq are the controller constants; V is the
characteristic hydraulic �uid volume of the actuator; and A is the cross-sectional area of
the actuator. It is assumed here that the model for the actuator dynamics has been reliably
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developed prior to its application for the structure. Another possibility is that the parameters
involved in the actuator model are uncertain and so are included in the previously de�ned
parameter vector �.
The state vector yf may also represent many choices of output. For example, it can handle

displacement, velocity or acceleration measurements if the matrices in Equation (4) are chosen
appropriately [20]. Accelerations can be obtained approximately by passing the velocities in
the state vector y through a �lter whose dynamics in Equation (4) represent the transfer
function Hd(s)=!20s=(s

2 +
√
2!0s+!20). This �lter can approximate di�erentiation accurately

if !0 is chosen larger than the upper limit of the frequency band of interest. On the other
hand, Equation (4) also allows modelling of the sensor dynamics. For example, to model the
limited bandwidth of a sensor, the dynamics in Equation (4) can represent a low-pass �lter
with the transfer function Hl(s)=!20=(s

2 +
√
2!0s+!20).

If the full state vector v(t)= [wf(t)T; y(t)T; yf(t)T]T is introduced, then Equations (2)–(4)
can be combined as follows:

v̇(t)=Av(t) + Bw(t) + Bcu(t) (8)

where the matrices A, B and Bc are given by

A≡



Awf 0Nwf×2Nd 0Nwf×Nyf

ByCwf Ay BycCyf

Byw Byf Ayf


 ; B≡



Bwf

02Nd×Nw

0Nyf×Nw


 and Bc≡



0Nwf×Nu

02Nd×Nu

Byu


 (9)

By treating w and u as constant over each subinterval [k�t; k�t + �t), where �t is the
sampling time interval that is small enough to capture the dynamics of the structure, Equation
(8) yields the following discrete-time equation:

v[k + 1]= �Av[k] + �Bw[k] + �Bcu[k] (10)

where v[k]≡ v(k�t), �A≡ eA�t , �B≡A−1( �A−INwf+2Nd+Nyf)B and �Bc≡A−1( �A−INwf+2Nd+Nyf)Bc,
w[k] is Gaussian discrete white noise with zero mean and covariance matrix �w = (2�=�t)INw ;
and u[k] is given in terms of the measured output by specifying a control law.
Assume that discrete-time response data, with sampling time interval �t, is available for

No components of the output state, that is, the measured output is given by

z[k]=L0v[k] + n[k] (11)

where L0 ∈RNo×(Nwf+2Nd+Nyf) is the observation matrix and n[k]∈RNo is the uncertain pre-
diction error which accounts for the di�erence between the actual measured output from the
structural system and the predicted output given by the model de�ned by Equation (10); it
includes both modelling error and measurement noise. The prediction error is modelled as a
stationary Gaussian discrete white noise process with zero mean and covariance matrix �n;
this choice gives the maximum information entropy (greatest uncertainty) in the absence of
any additional information about the unmodelled dynamics or output noise. Notice that z[k]
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is a linear combination of wf[k], y[k] and yf[k] and so it may include measured excitation,
measured displacements, velocities and accelerations, and measured control forces.
Now, choose a linear control feedback law using the current and the previous Np output

measurements,

u[k]=
Np∑
p=0
Gpz[k − p] (12)

where Gp, p=0; 1; : : : ; Np are the gain matrices, which will be determined in the next section.
It is worth noting that if the matrices Gp, p=0; : : : ; N ∗

p (N
∗
p ¡Np) are �xed to be zero, the

controller at any time step only uses output measurements from time steps that are more than
N ∗
p�t back in the past. Furthermore, by choosing a value of N

∗
p such that N ∗

p�t is larger
than the reaction time of the control system (data acquisition, online calculation of the control
forces and so on), it is possible to avoid any instability caused by time-delay e�ects.
Substituting Equation (12) into Equation (10):

v[k + 1]= ( �A+ �BcG0L0)v[k] + �Bw[k] + �Bc
Np∑
p=1
Gpz[k − p] + �BcG0n[k] (13)

Now de�ne an augmented vector UNp[k] as follows:

UNp[k]≡ [v[k]T; z[k − 1]T; : : : ; z[k − Np]T]T (14)

Then, Equation (13) can be rewritten as a discrete state equation for UNp :

UNp[k + 1]= ( �Au + �Buc)UNp[k] + �Bu �f[k] (15)

where

�f[k]≡ [w[k]T; n[k]T]T (16)

and �Au; �Bu and �Buc are given by

�Au ≡




�A 0(Nwf+2Nd+Nyf)×NpNo
L0 0No×NpNo

0(Np−1)No×(Nwf+2Nd+Nyf) I(Np−1)No 0(Np−1)No×No


 (17)

�Buc ≡
[ �BcG0L0 �BcG1 · · · �BcGNp

0NpNo×(Nwf+2Nd+Nyf+NpNo)

]
(18)

�Bu ≡




�B �BcG0

0No×Nw INo
0(Np−1)No×Nw 0(Np−1)No×No


 (19)
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Therefore, the covariance matrix �u≡E[UNp[k]UNp[k]T] of the augmented vector UNp is readily
obtained:

�u = ( �Au + �Buc)�u( �Au + �Buc)T + �Bu�f �B
T
u

�f =

[
�w �wn

�Twn �n

] (20)

where �f denotes the covariance matrix of the vector �f in Equation (16). Note that Equa-
tion (20) is a standard stationary Lyapunov covariance equation in discrete form.
In summary, the original continuous-time excitation, structure, actuator and output equations

are transformed to a linear discrete-time state-space equation for an augmented vector UNp .
The system response is a stationary Gaussian process with zero mean and covariance matrix
that can be readily calculated using Equation (20). These properties are used to design the
optimal robust controller for the structure by choosing the optimal gain matrices in Equation
(12) according to a suitable performance criterion.

3. OPTIMAL CONTROLLER DESIGN

The optimal robust controller is de�ned here as the one which maximizes the robust reliabil-
ity [18] with respect to the feedback gain matrices in Equation (12), that is, the one which
minimizes the robust failure probability for a structural model with uncertain parameters rep-
resenting the real structural system. Failure is de�ned as the situation in which at least one
of the performance quantities (structural response or control force) exceeds a given threshold
level. This is the classic ‘�rst passage problem’, which has no closed form solution [21].
Therefore, the proposed method uses an approximate solution based on Rice’s ‘out-crossing’
theory [21].

3.1. Conditional failure probability

Use q[k]∈RNq to denote the control performance vector of the system at time k�t. Its com-
ponents may be structural interstorey drifts, �oor accelerations, control force, etc. The system
performance vector is given by

q[k]=P0v[k] +m[k] (21)

where P0 ∈RNq×(Nwf+2Nd+Nyf) is a performance matrix which multiplies the full state vector
v to give the corresponding performance vector of the model. In order to account for the
unmodelled dynamics, the uncertain prediction error m∈RNq in Equation (21) is introduced
because the goal is to control the system performance, not the model performance; it is
modelled as discrete white noise with zero mean and covariance matrix �m.
For a given failure event Fi= {|qi(t)|¿�i for some t ∈ [0; T ]}, the conditional failure prob-

ability P(Fi|�) for the performance quantity qi based on the structural model and excitation
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model speci�ed by � can be estimated using Rice’s formula [21]:

P(Fi|�)≈ 1− exp[−��i(�)T ] (22)

where ��i(�) is the mean out-crossing rate for the threshold level �i and is given by

��i(�)=
�q̇i
��qi

exp

(
− �2i
2�2qi

)
(23)

where �qi and �q̇i are the standard deviation for the performance quantity qi and its derivative
q̇i, respectively. In implementation, q̇i must be included in yf in Equation (4) if it is not
already part of y.
Now consider the failure event F =

⋃Nq
i=1 Fi, that is, the system fails if any |qi| exceeds

its threshold �i. Since the mean out-crossing rate of the system can be approximated by:
�=

∑Nq
i=1 ��i [22], the probability of failure P(F |�) of the controlled structural system is

given approximately by

P(F |�)≈ 1− exp
[
−
Nq∑
i=1
��i(�)T

]
(24)

where Nq denotes the number of performance quantities considered.

3.2. Robust failure probability

No matter what technique (e.g. �nite-element method or system identi�cation) is used to
develop a model for a structural system, the structural parameters are always uncertain to
some extent. Furthermore, the excitation model is uncertain as well. Therefore, a probabilistic
description is used to describe the uncertainty in the model parameters � de�ned earlier. Such
probability distributions can be speci�ed using engineering judgement or they can be obtained
using Bayesian system identi�cation techniques. This leads to the concept of the robust failure
probability given by the theorem of total probability [18]:

P(F |�)=
∫
�
P(F |�)p(�|�) d� (25)

which accounts for modeling uncertainties in deriving the failure probability. This robust
failure probability is conditional on the probabilistic description of the parameters which
is speci�ed over the set of possible models �. Note that this high dimensional integral is
di�cult to evaluate numerically, so an asymptotic expansion is used [12]. Denote the integral
of interest by I :

I =
∫
�
el(�) d� (26)

where l(�) is given by

l(�)= ln[P(F |�)] + ln[p(�|�)] (27)
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The basic idea here is to �t a Gaussian density centred at the ‘design point’ at which el(�),
or l(�), is maximized. It is assumed here that there is a unique design point; see Reference
[23] for a more general case. Then, this integral is approximated by

I ≡P(F |�)≈ (2�)Nq=2 P(F |�
∗)p(�∗|�)√
detL(�∗)

(28)

where �∗ is the design point at which l(�) has a maximum value and L(�∗) is the Hessian
of −l(�) evaluated at �∗. The optimization of l(�) to �nd �∗ can be performed, for example,
by using MATLAB subroutine ‘fmins’ [24].
The proposed control design can be summarized as follows: by solving Equation (20),

the covariance matrix of the structural response can be obtained. Then, the robust failure
probability can be calculated using the asymptotic expansion formula in Equation (28) along
with Equations (23) and (24). The optimal robust controller is obtained by minimizing the
robust failure probability over all possible controllers parameterized by their gain matrices,
which again can be performed, for example, using MATLAB subroutine ‘fmins’ [24].
The optimal controller can be readily updated when dynamic data D is available from

the systems [5; 18; 25–28]. In this case, Bayes’ Theorem is used to get an updated PDF
p(�|D;�) that replaces p(�|�) in Equation (25) and hence the updated robust failure prob-
ability P(F |D;�) [18] is minimized to obtain the optimal control gains.

4. ILLUSTRATIVE EXAMPLES

4.1. Example 1: Four-storey building under seismic excitation

The �rst example refers to a four-storey building under seismic excitation with an active mass
driver and a sensor on each �oor above the ground level. In this example, the stochastic ground
motion model is �xed during the controller design but the shear-building model of the structure
(Figure 1) is uncertain. The nominal model of the structure has a �oor mass and interstorey
sti�ness uniformly distributed over its height. The sti�ness-to-mass ratios ki=Mi, i=1; : : : ; 4
is 1309:3 s−2, where Mi is the mass of �oor i. The nominal damping-to-mass ratios ci=Mi,
i=1; : : : ; 4 are all chosen to be equal to 2:0s−1. As a result, the nominal modal frequencies of
the uncontrolled structure are 2.00, 5.76, 8.82 and 10:82Hz and the nominal damping ratio of
the �rst mode is 1.00%. In order to take into account the uncertainty in the structural model
parameters, all the sti�ness and damping parameters are assumed to be Gaussian distributed,
truncated for positive values of the sti�ness and damping, with mean at their nominal values
and coe�cients of variation 5% (sti�ness) and 20% (damping), respectively. To provide
more realism, the structure to be controlled is de�ned by model parameters sampled from
the aforementioned probability distributions rather than being equal to the nominal structural
model. This gave sti�ness-to-mass ratios of 1253, 1177, 1304 and 1344 s−2 for the 1st to
4th �oor, respectively. The corresponding damping-to-mass ratios are 2.50, 2.16, 1.68 and
2:22 s−1.
The ratio � of the actuator mass Ms to the total structure mass Mo=

∑4
i=1Mi is chosen

to be 1%. The natural frequency !s and the damping ratio �s of the actuator are chosen
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Figure 1. Four-storey shear building with active mass driver on the roof (Example 1).

according to the following expressions which give the optimal passive control system for the
�rst mode of the nominal structure under white-noise excitation [29]:

!s =!1

√
2− �

2(�+ 1)2

�s =

√
�(3�+ 4)

2(�+ 1)(�+ 2)

(29)

where !1 is the fundamental frequency of the nominal uncontrolled structure. Then, the
sti�ness-to-mass ratio ks=Ms and the damping-to-mass ratio cs=Ms of the actuator are given
by: ks=Ms = ks=�Mo =!2s and cs=Ms = cs=�Mo = 2�s!s. In this example, ks=Ms = 1:540× 102 s−2
and cs=Ms = 2:473 s−1 are the optimal parameters based on Equation (29). However, they are
assumed to be, ks=Ms = 1:6× 102 s−2 and cs=Ms = 2:0 s−1 in the following since it might not
be possible to build a controller with the optimal values of ks=Ms and cs=Ms in reality; these
parameters are assumed to be known during the controller design.
The controller design is based on maximizing the robust reliability or, equivalently, min-

imizing the robust failure probability, calculated for the structure with uncertain parameters
subject to an uncertain white-noise ground excitation with spectral intensity of 0:01m2 s−3 for
a 20 s interval. The threshold level for the interstorey drifts, actuator stroke and the control
force fcn=fc=Ms (normalized by the actuator active mass) are chosen to be 2:0 cm, 2:0 m
and 10 g, respectively. The failure event F of interest is the exceedance of any one of these
threshold levels. For simplicity, it is assumed that displacements are measured at speci�ed
�oors using a sampling interval �t=0:01 s. In the next example, acceleration measurements
will be assumed.
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Table I. Gain coe�cients of the optimal controllers (Example 1).

Gain Controller 1 Controller 2 Controller 3 Controller 4

G0(1) 14.08 — — —
G0(2) 11.87 — — —
G0(3) 49.46 — — —
G0(4) 32.66 86.15 134.58 —
G1(4) — — −26:63 237.45
G2(4) — — −20:98 −150:72

Table II. Robust failure probability (Example 1).

Passive Controller 1 Controller 2 Controller 3 Controller 4

P(F |�) 0.56 0.0013 0.0014 0.0008 0.0009

Four robust controllers are designed using the proposed methodology, each using di�erent
control feedback:

Controller 1: Displacement measurements at every �oor at the current time step.
Controller 2: Displacement measurements at the 4th �oor at the current time step.
Controller 3: Displacement measurements at the 4th �oor at the current and previous two

time steps.
Controller 4: Displacement measurements at the 4th �oor at the previous two time steps.

Table I shows the optimal gain parameters Gp(i) for Controllers 1–4 where index p and
index i correspond to the number of time-delay steps and the �oor number, respectively.
Table II shows the robust failure probability for passive control (all gain coe�cients are �xed
at zero) and for Controllers 1–4. The active controllers give a much better design performance
objective than the passive mass damper. All controllers give similar design performance ob-
jectives but Controller 3 is the best, followed by Controllers 4 and 1, and then 2. Although the
number of measured degrees of freedom is di�erent in Controllers 1 and 2, the performance
of the controlled structure is almost the same. This is because the motion of the structure is
dominated by the �rst mode in the case of ground shaking. Therefore, the measurements at
one DOF contain almost all of the information regarding the motion of the structure. However,
Controller 3 gives a better performance objective than Controller 1 even though Controller 3
uses only one sensor because measuring displacements at consecutive time steps gives more
information.
Figures 2–5 show the time histories of the interstorey drifts under the design excitation

for Controllers 1–4, respectively. The dashed and solid curves show the response of the
uncontrolled and controlled structure, respectively, during simulated operation under the same
ground motion sampled from the stochastic ground motion model. It can be seen that the
interstorey drifts are signi�cantly reduced by the controllers. Furthermore, Table III shows
the statistical properties (standard deviations and maximum) of the performance quantities
(interstorey drifts, actuator stroke and actuator acceleration) for the uncontrolled structure,
passive control and Controllers 1–4. By comparing Controllers 1 and 2 in Table II, one
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Figure 2. Simulated interstorey drifts (in metres) for the uncontrolled (dashed) and controlled structure
using Controller 1 (solid) (Example 1).

observes that the robust failure probabilities are very similar. Furthermore, Table III shows
that the performance quantities in these two cases are almost the same. This implies that the
performance when using feedback from one or four (all) degrees of freedom are virtually the
same. As mentioned before, this is because the motion of the structure is dominated by the �rst
mode in the case of ground shaking and so using the measurements at one degree of freedom
is su�cient to characterize the motion of the structure. Note that although Controller 3 gives
the smallest probability of failure in Table II, the performance quantities in Table III are
almost the same for all optimal controllers.
Controller 4 is the case in which the controller feeds back the measurements at past time

steps only. Although its robust failure probability is slightly larger than Controller 3 in Ta-
ble II, the performance quantities in Table III are virtually the same as Controller 3. Moreover,
this controller does not su�er from any stability problem induced by any time delays if the
time-delay of the controller �td is less than �t. If �td is larger than �t, one can choose
Np¿�td=�t and �x all the matrices G0; : : : ;GINT(�td=�t) at zero. Here, INT denotes the
integer part of a number. Then, the controller uses the measurements far back enough in
time that the control system has enough time to compute and apply the control command.
Figures 6 and 7 show the similar control force (normalized by the actuator mass) and stroke
time histories respectively for Controllers 1–4.
In order to test the robustness of the proposed controller to the excitation, the structural

response is calculated for the uncontrolled structure and the controlled structure (using Con-
troller 3) subjected to the 1940 El Centro earthquake record. In Figure 8, the dashed line
and the solid line show the �rst storey drifts for the uncontrolled structure and the controlled
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Figure 3. Simulated interstorey drifts (in metres) for the uncontrolled (dashed) and controlled structure
using Controller 2 (solid) (Example 1).

structure, respectively. It can be seen that the structural response is signi�cantly reduced by
using the proposed controller. In this case, the peak control force normalized by the actuator
mass is 1:7 g and the peak actuator stroke is 0:23 m.

4.2. Example 2: Control benchmark problem

The proposed control strategy is applied to the well-known control benchmark problem with
an active mass driver [30]. The benchmark problem is based on a three-storey, single-bay
laboratory test structure [31]. It is a steel frame of height 158 cm. The natural frequencies of
the �rst three modes are 5.81, 17.68 and 28:53Hz, respectively. The associated damping ratios
are 0.33, 0.23 and 0.30%. In this example, the structural system is assumed known (an accu-
rate dynamic model is given in the benchmark, but the stochastic excitation model is treated
as uncertain). The controllers are designed and tested under the excitation of a Kanai–Tajimi
�ltered white noise, and further tested using a scaled 1940 El Centro earthquake record and
a scaled 1968 Hachinohe earthquake record. The sampling time intervals is �t=0:001 s, as
speci�ed by the benchmark. The threshold levels for the interstorey drifts, actuator displace-
ments and actuator accelerations are 1:5 cm, 9:0 cm and 6:0g, respectively. As the delay time
of the control force is �td = 0:0002s, the controllers in this study are chosen to feedback only
the response measurements from one and two time steps back, that is, G0 is �xed to be zero
and Gi, i=1; 2 are the design parameters. Two feedback cases were investigated as follows:
Controller 1: Feedback of acceleration from all �oors at the previous two time steps, i.e.

Gi, i=1; 2 are the design parameters.
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Figure 4. Simulated interstorey drifts (in metres) for the uncontrolled (dashed) and controlled structure
using Controller 3 (solid) (Example 1).

Controller 2: Acceleration measurements from all �oors are passed through the same low-
pass �lter with transfer function !2c=(−!2 + 2i�c!c! + !2c). Then, the controller feeds back
the �ltered measurements at the previous two time steps. Here, �c is chosen to be 1=

√
2 and

!c is included in the design parameter set. This case has been previously studied using only
output of the �lter at the current time [14].
Following the benchmark guidelines [30], the controllers are used to control a high-�delity

linear time-invariant state-space representation of the structure which has 28 states. Quan-
tization, saturation and time delay of the control force are considered in this model. In
order to test the robustness of the controllers with respect to modeling errors, a reduced
10-state model is used in the design process, which is provided at the o�cial benchmark web
site at http:==www.nd.edu=∼quake=. Furthermore, the excitation is assumed to be a stationary
zero-mean Gaussian process with a spectral density de�ned by an uncertain Kanai–Tajimi
spectrum:

S �xg �xg = S0
4�2g!

2
g!

2 +!4g
(!2 −!2g)2 + 4�2g!2g!2

(30)

where !g, �g are assumed to be log-normally distributed with mean 50 rad=s and 0.5, respec-
tively. Furthermore, their logarithm standard deviations are assumed to be �log !g =0:2 and
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Figure 5. Simulated interstorey drifts (in metres) for the uncontrolled (dashed) and controlled structure
using Controller 4 (solid) (Example 1).

Table III. Performance quantities for interstorey drifts and actuator stroke and
acceleration under the design excitation (Example 1).

Performance Threshold Uncontrolled Passive Controller Controller Controller Controller
quantity 1 2 3 4

�x1 (m) — 0.0143 0.0075 0.0042 0.0042 0.0040 0.0040
�x1−x2 (m) — 0.0138 0.0072 0.0039 0.0039 0.0037 0.0037
�x2−x3 (m) — 0.0095 0.0050 0.0029 0.0028 0.0027 0.0028
�x3−x4 (m) — 0.0053 0.0029 0.0021 0.0020 0.0019 0.0020
max |x1| (m) 0.02 0.0373 0.0213 0.0120 0.0122 0.0114 0.0115
max |x1 − x2| (m) 0.02 0.0374 0.0197 0.0117 0.0116 0.0113 0.0114
max |x2 − x3| (m) 0.02 0.0257 0.0143 0.0088 0.0088 0.0086 0.0087
max |x3 − x4| (m) 0.02 0.0134 0.0085 0.0059 0.0058 0.0059 0.0060
�xs (m) — — 0.1019 0.4056 0.3934 0.4101 0.4071
�fcn (g) — — — 2.7764 2.6656 2.7785 2.7905
max |xs| (m) 2.0 — 0.2984 1.0756 1.0374 1.0897 1.0895
max |fcn| (g) 10.0 — — 8.0942 7.9589 8.3669 8.509

�log �g =0:2. The spectral intensity parameter S0 is given by

S0 =
0:03�g

�!g(4�2g + 1)
g2s (31)

such that � �xg =0:12 g regardless of the values of !g and �g.
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Figure 6. Controller force (normalized by the actuator mass) time histories
using Controllers 1–4 (Example 1).

Table IV shows the optimal gains and the optimal �lter frequency parameter for Con-
trollers 1 and 2. One can see that the control gains increase signi�cantly when using the
low-pass �lter. Table V shows the performance quantities J1 to J10 de�ned in Reference [30]
for Controllers 1 and 2, for the controller obtained by May and Beck [14] and also for the
sample controller provided in Reference [30]. All the controllers provide satisfactory perfor-
mance. Note that the controller obtained by May and Beck is similar to Controller 2 except
that they only feed back the response measurements at the current time. Their optimal gains
are G0(1)=0:431, G0(2)=0:291, and G0(3)=0:235 and their optimal �lter frequency param-
eter is !c = 33:1 rad=s. J1 to J5 correspond to the case of uncertain excitation for 300 s. J1
and J2 correspond to the standard deviations of the maximum RMS drifts and the maximum
RMS absolute acceleration of the controlled structure over all of the �oors, normalized by
the corresponding values for the uncontrolled structure. J3, J4 and J5 correspond to the RMS
actuator displacement relative to the third storey, the RMS relative actuator velocity and the
RMS absolute actuator acceleration. Again, they are normalized by their corresponding values
for the uncontrolled structure. J6–J10 represent the peak values of the same response quan-
tities for the deterministic response of the controlled structure to the two scaled earthquake
ground motions, the north–south component of the 1940 El Centro earthquake record and
the north–south component of the 1968 Hachinohe earthquake record. Again, these quantities
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Figure 7. Controller stroke time histories (in metres) using Controllers 1–4 (Example 1).

are normalized by the peak response quantities of the uncontrolled structure for each
earthquake.
Previous work [14] showed that directly feeding back the accelerations at the current time

without a compensator leads to an unstable controlled system due to the delay-time imposed
in the model of the system to be controlled [30]. However, Controller 1 provides satisfactory
performance using direct feedback of delayed accelerations because the delay-time is explicitly
taken into consideration in the formulation, as described in Section 2. In Reference [14], a
�lter was used in the feedback loop to produce stability. When a �lter is used here (Controller
2), the control system is not as e�cient as in Controller 1 when subjected to random excitation
because certain information, especially the high frequency content, is �ltered out. However,
Table V shows it provides better performance for the El Centro and the Hachinohe earthquake
records, which do not follow the Kanai–Tajimi spectrum closely.
Figure 9 shows the �rst storey drift for both earthquakes using Controller 2 (solid curve)

which has the low-pass �lter. For comparison purposes, the dashed lines show the corre-
sponding �rst storey drifts of the uncontrolled structure. It can be seen that these drifts are
signi�cantly reduced by using the proposed control methodology. Figure 10 shows the actu-
ator displacements for both earthquakes. It can be seen that they are much smaller than the
threshold values.
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Figure 8. First storey drift (in metres) of the uncontrolled (dashed) and controlled structure using
Controller 3 (solid) to the El Centro earthquake record (Example 1).

Table IV. Design parameters for the optimal controllers (Example 2).

Gain\Controller 1 2

G1(1) 0.0062 0.0930
G1(2) 0.0014 0.0959
G1(3) 0.0228 0.0931
G2(1) 0.0319 0.1268
G2(2) 0.0494 0.1056
G2(3) 0.0838 0.1047
!c(rad=s) — 44.993

5. CONCLUDING REMARKS

A reliability-based robust feedback control approach was presented for dynamical systems
adequately represented by linear state space models. The response covariance matrix is �rst
obtained from the discrete Lyapunov equation using an augmented vector for the system. The
optimal controller is then chosen from a set of possible controllers so that the robust relia-
bility of the controlled system is maximized or, equivalently, the robust failure probability is
minimized. An asymptotic approximation is used to evaluate the high-dimensional integrals
for the robust failure probability. The feedback of the past output provides additional infor-
mation about the system dynamics to the controller. It can also be used to avoid stability
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Table V. Performance quantities for the benchmark problem (Example 2).

Excitation Performance Controller Controller May and Beck Sample controller
quantity 1 2 [14] [30]

J1 0.183 0.205 0.207 0.283
J2 0.301 0.310 0.345 0.440

Filtered white noise J3 0.366 0.736 0.851 0.510
J4 0.363 0.738 0.832 0.513
J5 0.606 0.676 0.683 0.628

Maximum response J6 0.492 0.380 0.380 0.456
of Hachinohe 1968 J7 0.811 0.694 0.684 0.681
and El Centro 1940 J8 0.812 1.39 1.64 0.669

J9 0.847 1.35 1.56 0.771
J10 1.64 1.16 0.936 1.28
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Figure 9. First storey drift (in cm) of the uncontrolled (dashed) and controlled structure using Controller
2 (solid) to the El Centro and Hachinohe earthquake records (Example 2).

problems due to time-delay e�ects. The proposed approach does not require full state mea-
surements or a Kalman �lter to estimate the full state. The robust failure probability criterion
provides robustness of the control for both uncertain excitation models and uncertain system
models. Furthermore, it can give di�erent weighting to the di�erent possible values of the
model parameters by using a probability description of these parameters based on engineer-
ing judgement or obtained from system identi�cation techniques. This is in contrast to most
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Figure 10. Actuator displacement (in cm) using Controller 2 to the El Centro
and Hachinohe earthquake records (Example 2).

current robust control methods which split the values for the system parameters into only two
groups (possible or impossible).
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