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ABSTRACT: The problem of updating a structural model and its associated uncertainties by utilizing dynamic
response data is addressed using a Bayesian statistical framework that can handle the inherent ill-conditioning
and possible nonuniqueness in model updating applications. The objective is not only to give more accurate
response predictions for prescribed dynamic loadings but also to provide a quantitative assessment of this
accuracy. In the methodology presented, the updated (optimal) models within a chosen class of structural models
are the most probable based on the structural data if all the models are equally plausible a priori. The prediction
accuracy of the optimal structural models is given by also updating probability models for the prediction error.
The precision of the parameter estimates of the optimal structural models, as well as the precision of the optimal
prediction-error parameters, can be examined. A large-sample asymptotic expression is given for the updated
predictive probability distribution of the uncertain structural response, which is a weighted average of the
predictive probability distributions for each optimal model. This predictive distribution can be used to make
model predictions despite possible nonuniqueness in the optimal models.

INTRODUCTION

Over the last decade or so, the challenging problem of struc-
tural model updating has gained much interest as finite-ele-
ment modeling capabilities and modal testing have become
more mature areas of structural dynamics (Chen and Garba
1980; Torkamani and Ahmadi 1988; Natke 1988; Imregun and
Visser 1991; Fritzen and Zhu 1991; Hjelmstad et al. 1992;
Mottershead and Friswell 1993; Capecchi and Vestroni 1993).
In model updating, a theoretically based finite-element model
of a structure is adjusted so that it is somehow ‘‘consistent’’
with dynamic test data from the structure. This updated model
should then give more accurate response predictions for pre-
scribed dynamic loadings. In theory, a successful methodology
for this process can also be used for global damage detection
and assessment by using structural vibration data to continu-
ally update the structural model [e.g., Proc. (1988)]. In this
application, local changes in the stiffness distribution of the
model are interpreted as damage at the corresponding location
in the structure.

In model updating, linearity is usually assumed and the fi-
nite-element model is adjusted so that either the calculated
response time histories, frequency response functions, or mo-
dal parameters ‘‘best’’ match the corresponding quantities
measured or identified from the test data. This type of inverse
problem falls within the discipline of system identification
(Eykhoff 1974; Goodwin and Payne 1977; Identification 1982,
Shinozuka et al. 1982; Ljung 1987). There is, however, no
well-accepted solution to the model updating problem. This is
primarily because of an inherent difficulty: there is a mismatch
between the level of information in the detailed theoretical
finite-element model, which is of uncertain accuracy, and the
relatively sparse information in the “incomplete’” set of
“noisy’’ test data. This produces an ill-conditioned and often
nonunique inverse problem in updating the theoretical model
[e.g., Udwadia (1985); Berman (1989); Janter and Sas (1990)].
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For a model updating method to be useful in practice, it
should handle the following difficulties:

1. The dynamic test data are incomplete relative to the
model complexity needed to produce ‘‘physically mean-
ingful’’ models. For instance, the set of observed degrees
of freedom (DOF) is usually a small subset of the set of
model DOF due to the limited number of sensors used.
Also, the number of identifiable modes of vibration is
much less than the number of model DOF because of
limited bandwidth in the response.

2. The dynamic test data are contaminated by measurement
noise.

3. The chosen class of structural models does not contain
the actual structural system; that is, model error always
exists and there are no “true’’ values of the model par-
ameters.

4. The modal parameters controlling the dynamic response
are insensitive to changes in the stiffness and mass dis-
tributions.

5. To reduce uncertainties and the degree of nonuniqueness,
the description of the class of structural models should
be able to include as much prior information as possible
about the structural system, such as its topological con-
nectivity and experience from dealing with similar sys-
tems.

Very few model updating methods can deal successfully with
all of these practical problems.

The need for model updating arises because there are always
errors associated with the process of constructing a theoretical
model of a structure, and this leads to uncertain accuracy in
the predicted response. There are many sources of modeling
errors, such as variations of the material properties during
manufacture; inexact modeling of the material constitutive be-
havior; uncertainties introduced during the construction pro-
cess; inexact modeling of the boundary conditions (e.g., there
are no exact pinned or fixed joints); errors because of the spa-
tial discretization of the distributed structural system; and un-
modeled features such as neglected ‘‘nonstructural’’ compo-
nents.

Because of these modeling errors, model updating is best
tackled as a statistical inference problem. This can be done by
embedding the ‘‘deterministic’’ structural models within a
class of probability models so that the structural models give
a predictable (‘“‘systematic’’) part and the prediction error is
modeled as an uncertain (“random’’) part. Eykhoff (1974),
Goodwin and Payne (1977), and Ljung (1987), for example,
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emphasize a statistical approach to system identification using
a “‘traditional’’ statistical framework that could be used to de-
velop model updating methods. Also, powerful statistical tech-
niques have been developed using a Bayesian statistical frame-
work, including the Principle of Maximum (Information)
Entropy [e.g., Box and Tiao (1973); Jaynes (1983); Bretthorst
(1988); Beck (1989, 1996)]. One important advantage of these
Bayesian techniques is that they can be used to develop meth-
ods that can handie the nonuniqueness that can arise in model
updating because of insufficient data relative to the desired
model complexity.

A general Bayesian statistical framework for system iden-
tification is presented in this work that can be used for model
updating and addresses all of the aforementioned practical dif-
ficulties. The objective is not only to give more accurate re-
sponse predictions for prescribed dynamic loadings but also to
provide a quantitative assessment of this accuracy. Therefore,
both the structural model and the probability model describing
the accuracy of the structural model’s predicted response are
updated using test data. This is done by applying Bayes’ the-
orem to update probability models that quantify modeling un-
certainties.

Since this approach involves the probability of models,
which are not “‘repeatable events,’’ the ‘“‘traditional’’ interpre-
tation of probability as a relative frequency of occurrences in
the long run is not applicable. However, probability can also
be interpreted as a multivalued logic for plausible reason-
ing under incomplete information (Jeffreys 1961; Cox 1961;
Jaynes 1983, 1988). Thus, to quantify the uncertainty within
a class of models, a probability distribution is used that gives
a measure of how plausible each model is, on the basis of the
given information.

In this paper, the Bayesian statistical framework for system
identification is first presented and then an asymptotic approx-
imation is described to allow evaluation of the multidimen-
sional integrals that arise for the updated probabilistic predic-
tions of the structural response (Beck 1989, 1996). This theory
gives an appropriate statistical framework for properly han-
dling the uncertainties due to ill-conditioning and nonunique-
ness associated with model updating.

STATISTICAL SYSTEM IDENTIFICATION

It is assumed that a general mathematical form has been
chosen to specify a class of models Al describing the input-
output behavior of a structure, but that there are “‘free’” par-
ameters a € S(a) C R" that need to be assigned values from
a region S(a) to choose a particular model M(a) € M. The
models can be linear or nonlinear, and static or dynamic. They
can be expressed as Newtonian equations of motion, in state-
space form, or as ARMA models. Beck and Katafygiotis
(1992) give an example of a class of models appropriate for
updating of a linear finite-element model of a structure for
damage detection purposes.

Once the class of structural models is selected, modeling
uncertainties of two general types need to be quantified by
using probability models. The first type, parameter uncertainty,
arises simply because the most appropriate values of the model
parameters a to be used to describe the structure’s behavior
are uncertain; that is, it is not known a priori which model in
the class of models A is the “best’’ to describe the structure’s
behavior. The second type of uncertainty, prediction accuracy,
arises because modeling errors lead to an uncertain error in
the response predictions given by any model in M. For ex-
ample, if the class of linear dynamic models is chosen, then
there are uncertainties associated with the values of the various
parameters that need to be chosen, such as Young’s modulus
E or the effective moment of inertia of a cracked concrete
member. Furthermore, for any given model in the class, the
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corresponding predicted response will differ from the actual
structural response because any mathematical model is only
an approximation of the real behavior of a structure, and un-
certain modeling errors lead to uncertain accuracy for the mo-
del’s predictions.

The essence of the statistical system identification approach
presented here is to set up probability models describing these
two types of uncertainties, which are then updated by applying
Bayes’ theorem to the available data.

Basic Probability Models

The statistical framework is presented based on using dy-
namic test data in the time domain, but it can be adapted to
frequency-domain or modal-parameter data, or even to static
test data. The specified class of models M must therefore pro-
vide a functional relationship between the model output vector
q(n; a) € R™ at time ¢, = nAt, where At is a prescribed sam-
pling interval, and the system input Z} = {z(m) € R": m = 1,
2, ..., n} up to this time

q(n; a) = q(n; a, Z, M) ¢))

For simplicity, it is assumed here that the complete system
input can be observed; otherwise a stochastic model of the
system input must be constructed to cover unobserved or
“noisy’’ inputs. Although the model output is only required
at discrete times, the theoretical model that is the underlying
basis of the class M can be in any form, such as a system of
continuous-time differential equations. The assumption of dis-
crete-time input is not critical but it is typical of the data usu-
ally available, so an interpolation scheme is needed in the case
of continuous-time models. In the following, the dependence
of q(n; a) and other model quantities on the input Z] and the
theoretical model M will be suppressed in the notation.

The first step in embedding the deterministic class of models
M in a class of probability models is to define the prediction
error e(n; a) € R™ as the difference between the model output
and the system output, so that q + e is equal to the system
output at the Ny DOF in the structure corresponding to those
in the model. Since it is common in practice to not measure
all DOF, let S,q € R™ and S,q € R"™ correspond to the
model output at the observed and unobserved DOF, respec-
tively, where S, € R and §, € RW+ NN gre selection
matrices with only one nonzero element, equal to unity, in
each row. Let y(n) € R™ and x(n) € R%™ denote the system
output at time ?, at the observed and unobserved DOF, re-
spectively; then

y(n)=S,lq(n; a) + e(n;a)]; x(n)=8S.[q(n;a) + e(n;a)] (2a,b)

The observed prediction error, which is the difference between
the model and measured system outputs, is a combined effect
of measurement noise and prediction error e(n; a). Although
these concepts could be separately modeled, for modern in-
strumentation the measurement noise is usually negligible
compared with the prediction error, and so the latter is ap-
proximately equal to its observed values. Therefore, the mea-
sured system output is essentially equivalent to the actual sys-
tem output.

To describe the uncertainty in the prediction error, a class
of probability models P is chosen, parameterized by the pre-
diction-error parameters o € R™, which prescribes a function
hys giving the probability density function (PDF) of a sequence
of M prediction errors for arbitrary M; that is,

p(EY(@)lo, P) = hyle(l; a), ..., e(M; a); &) 3)
Here EV(a) denotes the sequence of prediction errors {e(n; a);
n=1,..., M}, for model M(a) in M. Rather than present the

case for general h,,, we choose the class P so that e(n; a) is



a zero-mean stationary Gaussian white-noise stochastic pro-
cess with independent components. This choice implies that
knowing the prediction errors at other times, or at other lo-
cations within the structure, does not influence our uncertainty
concerning the value of the prediction error at a specified time
and location. This choice for the class P also corresponds to
a probability distribution h,, in (3), which is given by the prin-
ciple of maximum (information) entropy under the condition
of zero means and finite variances (Jaynes 1968, 1983). This
means that under the latter conditions, the Gaussian PDF for
hy gives the maximal uncertainty that EY in (3) can have, just
as the uniform distribution gives the maximal uncertainty for
an uncertain variable with a finite range. Therefore, if any
other choice for h, is made, there should be strong grounds
for the implied reduction in uncertainty in the predictions. Fi-
nally, the variances of the prediction errors at all DOF are
assumed to be equal, so the vector @ € R™, which needs to
be specified to choose a particular probability model from the
class P, reduces to a single parameter o; that is, N, = 1.
The selection of the classes M and P allows a class of
probability models M, to be defined, parameterized by a =
[a, o]” € S(a) C R where N, = N, + 1, which prescribes
a function g,, giving the PDF for the observed and unobserved
system output sequences, Y = {y(n) ER™ n=1,2, ...,
M} and XV = {(x(n) € R" ™. n =1, 2, ..., M}, respectively

p(YGw’ X]l”|aa Z?{a MP)=gM[y(l)’ . ,y(M), X(l), v, 1x(M);a’Z’1u]

1 LS
= W €exp [~E(;'2' E_ ”y(n) - So‘](n, a)llz]

n=1

I < .
X exp [‘E > Ix ~ S.q@; ) ] @

where g,, is determined using (2) in (3) along with the assumed
form of 4, and ||.| denotes the standard Euclidean 2-norm.

To account for the uncertainty in the values for the pa-
rameters a, the specification of M, also involves choosing an
initial (“‘prior’’) PDF 7r(a) over the set S(a) of possible pa-
rameter values, that is

plal i) = wie) %)

The choice for m(a) allows engineering judgment about the
plausibilities of the different models to be incorporated. It can
be chosen as a smooth, slowly varying PDF that is mathe-
matically convenient and roughly reflects the engineer’s judg-
ment. Beck and Katafygiotis (1992) give an example that is
appropriate for model updating for damage detection purposes.
Alternatively, the initial PDF can be chosen by the principle
of maximum entropy if the information to be utilized is “test-
able’” (Jaynes 1968). Dependence of the initial PDF on the
input ZY can be introduced in (5). For example, this might be
done when using linear models to account for the fact that the
nonlinearities in structures typically cause them to become
more flexible for stronger excitation, although the final results
are often insensitive to the choice of the initial PDF.

Summarizing, specification of the class M, implies specifi-
cation of two PDFs, which are the basic probability models
for statistical system identification: g, (Y%, X*; a, Z¥) for the
system output, which relates to the uncertainty in the predic-
tion accuracy of the models in M; and w(a) for the model
parameters a and o, which relates to the uncertainty in the
deterministic models in M and the prediction-error probability
models in P,

Initial and Updated Predictive Probability Models

The PDF in (4) gives predictions for the system output for
a particular probability model in class Mp, which is specified

by the value of the structural model and prediction-error pa-
rameters o. Prior to utilizing data, the best choice for making
predictions of the system output using the assumed class of
probability models is the initial predictive PDF

p(YY, XY|ZY, Mp) = f p(YY, X¥la, ZY, Mp)p(a|Mp) de

pICH)

= J’ en(YY, XY, a, ZV) (o) do
S(ar) (6)

which is readily derived from the axioms of probability (the
‘‘total probability theorem’’). Eq. (6) gives a predictive PDF
using the whole class M, as a weighted average of the pre-
dictive PDFs for each model in M,, with weights given by
their initial probabilities.

Let &y denote a set of observed time history data from the
structural system at N discrete times t, = nAt, where At is the
sampling interval. These data are assumed to consist of the
sampled history 2Y = {#(n) € R™ n =1, 2, ..., N} for N,
inputs and the sampled output history P = {§(n) € R™: n =
1, 2, ..., N}, which is the measured response at the N, ob-
served DOF of the structure. Usually, the inputs are exciting
forces or boundary accelerations and the measured response
quantities are accelerations at the observed DOF.

Based on the new information in the data @, the predictive
PDF in (6) can be replaced by an updated predictive PDF by
using the total probability theorem again

p(Y]I:"—Hv Xlxwlgb)v, Z?'«'H, Mp)

= f p(derh Xﬂa, @Ny Zx+1, Mp)p((!l@;v, JM,p) da
S(e)
=c f p(?llvv Yx-&-h X’lwla’ lev; Zx’#»lv MP)p(alMp) d(!
S(a)

=c f gM(Y?Iv Yx-Hs Xll”v o, lev, Zx-u)"n'(a) da
S(a) (7)

where now the system output at the observed DOF is only
predicted for the next (M — N) sampling times for a prescribed
future input ZY ., since this output is already specified for the
first N samples by @y. In (7), Bayes’ theorem is used to cal-
culate the updated (“‘posterior’’) PDF from the initial PDF

PDy, Mp) = cp(Yila, ZY, Mp)p(alMs) = cfi(PY; o, ZY)mr(cr)

®)
where
fN(Y);J; a, 2V = f gN(Y',v, XY a, 2 dx(1) --- dx(N)
sty
I S _Li”A St
T (V2mo)W R <, ¥y oq(n; a)
&)

and where the normalizing constant ¢ can be evaluated us-
ing (8)

c=pNZY, M) = | T @, ZD)m(a) dae (10)

S(e)

The updated predictive PDF in (7) using the whole class M,
and the data @, can be viewed as a weighted average of the
predictive PDFs for each model in M, like the initial case in
(6), except that now the weights are given by the updated
probabilities for each model.
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The difficulty with the solution given in (6) for the initial
predictive PDF for the system output is that the multidimen-
sional integral can not be evaluated analytically, or numeri-
cally if the dimension of the parameters space S(a) is too high
(say, greater than 5). The situation can be even worse for nu-
merical integration of (7) for the updated predictive PDF, since
the function p(a|@y, M,) is sharply peaked at one or more
locations in S(a) if the number of sampling items N is not
small. This difficulty is overcome by developing an asymptotic
approach, which not only provides approximations for the re-
quired integrals, but also provides insight into the solution
which is not revealed by the integrals themselves.

Optimal Parameters and System ldentifiability

Define the optimal parameters & = [47, 6] for M, given
data 2, to be values of the parameters a € S(a) that globally
maximize fy(PY, a, 25) in (9), that is,

P &, 2Y) = max fu(PY; o, 2Y) (1)

o € S(ax)

The optimal parameters are equivalent to the maximum like-
lihood estimates used in *‘traditional’’ statistical theory based
on the interpretation of probability as relative frequencies of
events in the “long run.”” From (8), they are also the most
probable values based on the data in the case that all parameter
values are initially equally plausible over a region containing
the optimal parameters.

The optimal parameters arise naturally in constructing an
asymptotic approximation for the updated predictive distribu-
tion in (7), as shown in the next section. In preparation for
this derivation, the concept of system identifiability is intro-
duced. First, define an optimal probability model Mp(&) for
given data @, to be a model in M, given by the optimal pa-
rameter & = [47, 6]". Let S, (Mp; Dy) C M, denote the set of
all optimal models in the class M, given Dy, and let S, (a;
Dyy C S(a) denote the set of all corresponding optimal par-
ameters; then:

+ A parameter o, of a is globally system identifiable for
class M, and data D, if S,,(a; Dy) contains only one
optimal parameter, or, if not, then

&, &% € Spu(a; By) = & = &7 (12)

» A parameter o; of « is system identifiable for class M,
and data 9y if there exists a positive number €, such that

A1) A . A (1) A (2)| ~A(l) _ a(2)
&'l &? E S D= & — 67 > or &Y =6

13)

* A parameter o; of a is locally system identifiable for class
Mp and data Dy if it is system identifiable but not globally
system identifiable.

The above definitions can be extended; e.g., the model pa-
rameter vector « is (globally) system identifiable under &y if
all of its elements are (globally) system identifiable, whereas
« is locally system identifiable if it is system identifiable but
at least one of its elements is only locally system identifiable.
The class of models M; is system identifiable under @, if the
model parameter vector a is system identifiable, with similar
definitions for the locally and globally identifiable cases. If
a, and so AM,, is system identifiable under B, and S(e) is a
bounded set, then there is only a finite number K of optimal
parameters for M, given Dy, with K = 1 corresponding to
global system identifiability of M.

Asymptotic Approximation

Suppose there is a finite number K of optimal parameters,
and denote them by &®, k = 1, ..., K. By expanding
In fN(? N o, Z¥) in a second-order Taylor series about an opti-
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mal parameter &, the following local approximation is derived:

(Y o, ZY) = fu(PY; &, ZY)exp (—% [ — &)"Ap(@)[a — &])
(14)

where the elements of the N, X N, Hessian matrix A,(a) are
given by
_az In fN(?llv; o, lev)

dadoy

[AN(a)]ij = (15)
The order of the elements of Ay is O(N) and, therefore, for
a large number N of sampling times, which is usually the case
with dynamic test data, fy(¥?; a, 2Y) is very peaked at each
optimal parameter &*. Therefore, Laplace’s method for as-
ymptotic expansions can be applied to obtain the following
approximation for the first integral in (7) (see Appendix I):

p(YxH, Xfl"lgbm Zx+h Mp)

K
= D wip(Y i, XYI&®, Dy, ZH.r, M1 + ON)]
k=1 (16)
where for an optimal parameter &

&, Dy, ZN+1, Mp)

p(YN., XY

_ P, YL, XY, 2Y, ZN. 0, Me)
p(¥ila, 2V, Mp)

gV, YN 2y, Zy.1)

v é,
LT &, Z)

M
1 1 AN
T (V2me) % exp [ 267 n;ﬂ ly(n) — Soq(n; )| ]
1 1 -
X Jamay et XP [—g Z lIx(n) — S.q(m ;.)||2] an
and the weighting coefficient w, corresponding to optimal pa-
rameter &% is given by

We= 2wl = )| Aya®)] (18)

DI

k=1
The continuous weighted average for the updated predictive
PDF in (7) is therefore approximated by a discrete weighted
average of the predictive PDFs for each optimal model in class
Mp. This asymptotic result is valid when there is a finite num-
ber of optimal parameters, so it is necessary that the class M,
is system identifiable under data @y. System identifiability is
also sufficient if the parameter space S(«) is bounded.

Eq. (18) shows that for the asymptotic approximation of the
updated predictive PDF given by (16), the initial PDF m(a) is
not required over the whole domain S(a). Instead, only the
relative values at the optimal parameters &”* need be specified.
This allows engineering judgment to be incorporated since
some of the optimal models based on the data may not be very
plausible from an engineering point of view. If M, is globally
system identifiable under @y, that is, K = 1 in (18), the initial
PDF does not enter at all. This is the well-known Bayesian
result that a large amount of data will overwhelm the effect
of the chosen initial PDF and one can proceed using the pre-
dictive PDF for the unique optimal model (Lindley 1965). The
above result shows, however, that this is only true in the case
of global system identifiability.

Since fu(PY; a, 2Y) is very peaked at each optimal param-
eter &, the updated PDF p(a@y, Mp) is too if the initial PDF



is a smooth and slowly varying function of a. It can be de-
duced from (8) and (14) that in this case p(c|By, M;) behaves
locally about each optimal parameter & like a multidimen-
sional Gaussian distribution with means & and an N, X N,
covariance matrix Ay'(&). The optimal models may therefore
be interpreted as locally most probable models within the class
M, based on the data 9, and the covariance matrix can be
used to examine how precisely the optimal parameters are
identified by the data. Furthermore, it can be deduced from
(18) that the predictive PDF in (16) for each of the optimal
models is weighted in proportion to the volume of the updated
PDF p(a|@y, Mp) under its Gaussian-shaped peak positioned
at the corresponding optimal parameter. In fact, a more accu-
rate version of (16) would include all probability models for
which p(a|@y, M) has a local maximum, but as N increases,
the contributions of the optimal models eventually dominate.
The optimal parameters & = [8, &]” are determined by max-
1mlzmg fN with respect to a. For fixed model parameters a,
maximizing In £,(?¥, «, 27) with respect to o leads to

3*(a) = — Soq(n; a)|f = Ka) (19)

Therefore, the most probable standard deviation &(a), for
given model parameters a, is equal to the RMS of the predic-
tion errors at all observed DOF. Obviously, the condition for
the overall most probable variance is given by (19) when a =
A. Substituting (19) into (9),

f(FY, a, &(a), ZY) = [2med(a)] ™™ (20)

Therefore, the optimal structural model parameters & are de-
termined by minimizing J(a) in (19), which corresponds to the
usual least-squares output-error method for estimation of
model parameters. Although least-squares parameter-estima-
tion methods can be accepted in their own right, by viewing
them within the Bayesian statistical framework, one can de-
termine the prediction accuracy of the optimal models, the
precision of the parameter estimates of the structural models
and prediction-error probability models, and the updated pre-
dictive PDF even when there are multiple optimal models.

In structural applications, the model output q(n; a) involved
in (19) is a nonlinear function of the parameters, even if the
model has linear dynamics, and so the minimization must be
done numerically by an iterative optimization algorithm. There
may be multiple optimal model parameters because J(a) might
attain its minimum at more than one value & in S(a), the set
of permissible values of a. The task of finding all the global
minima of the nonconvex function J(a) is nontrivial. Powerful
methods have been developed, however, to treat this problem
[e.g., Katafygiotis and Beck (1998); Yang and Beck (1998)].
Notice that the optimal prediction-error variance 6> = 6%(4) =
J(&) is uniquely determined even though 4 may not be, since
by definition J(4) is the global minimum of J(a), and so each
optimal structural model has the same optimal prediction-error
variance.

It is of interest to note that the exact updated predictive PDF
in (7) does not require parameter estimation in the usual sense,
but that the asymptotic approximation in (16) does. The prob-
lem is converted from an integration over all possible proba-
bility models in the class M., which is computationally pro-
hibitive when there are more than just a handful of parameters,
to a nontrivial optimization problem, which can at least be
tackled numerically. Since the optimal parameters are also
Fisher’s MLEs (maximum likelihood estimates), the well-
known MLE approach to parameter estimation can be justified
in terms of an asymptotic approximation to the exact Bayesian
solution for response predictions, but, in addition, the asymp-
totic result in (16) shows how to proceed when there are mul-

tiple MLEs, while it is not clear how to proceed in this situ-
ation in ‘‘traditional’’ statistics.

The Hessian matrix Ay(&) needed to evaluate the weights
in (18) is block diagonal with one block being an N, X N,
matrix By(&) corresponding to the optimal structural model
parameters &, and the other block matrix Cy(§) being simply
a scalar corresponding to the prediction-error parameter &,
which is the same for all optimal parameters a. Therefore, the
weights in (18) depend only on the determinant of the matrix
By with elements given by

3%J(a) 1 < [9qn;a)” _ aq(n;a)
CN- —_ S7s
[Br(@™)],= 26 [aa 00y | 6’2; da, SoSo da;  Jm
@n

where J(a) is given by (19), §* = §*@&) = J(4) and the last
approximation is valid if J(&) is sufﬁciently small. This ap-
proximation implies that the weights in (18) are not sensitive
to the output data Y other than through their 1nﬂuence on the
optimal parameters & """ since the common factor 1/6¢” cancels
in evaluating the w,. Also, because of the block diagonal struc-
ture of the Hessian matrix Ay(&*), the inverse of By(&%) is
the covariance matrix for the local Gaussian behavior of the
updated PDF p(a|@,, M;) centered at &% in the structural
model parameter space.

There is another important simplification proved in Appen-
dix I that can be made to the expression (18) for the weighting
coefficients. The submatrix By(4) in (21) can be reduced even
further if some of the structural model parameters are globally
system identifiable. In this case, the elements in (21) contain-
ing the partial derivatives involving a globally system identi-
fiable parameter a; can be dropped. Thus, to determine the
weighting coefficients in (18), the only elements of Ay(a, o)
needed in order to evaluate the determinant are those given by
(21) that involve partial differentiation only with respect to
structural model parameters a;, which are locally system iden-
tifiable. Furthermore, the initial PDF wr(at) in the expression
(18) for the weighting coefficients can be replaced by the in-
itial PDF for the locally system identifiable model parameters
conditional on the globally identifiable parameters.

To summarize, the asymptotic approximation in (16) can be
used for updated predictions of the system output. For predic-
tion of the output at only the unobserved DOF for times t,, n
=1, ..., M, (16) can be integrated with respect to Y., to
get the PDF

p(Xﬂg)Ns Zy.., Mp)
K
= DO wmpXY&®, Dy, ZY.,, M1 + ONY)
k=1 (22)
where

P(Xllwl(’i; gbm Zxﬂ, Mp)

IR e A
3 2 I ~ S.q0; ) ] o3

1

Of course, if M < N + 1, then ZX,, is irrelevant and can be
ignored in the conditioning information. For prediction of the
output at only the observed DOF for times z,, n =N + 1, ...,
M, (16) can be integrated with respect to X' to get the PDF

p(YZ’HI?bN, Zy ., Mp)

K
= > mp(YHL&®, Dy, ZH., M1 + ONY]
@4

where
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p(Y4, &, Dy, ZH.,, Mp)

1 1 <

= (\/2m ), SXP [’2—6,2 n;‘il ly(n) — Soa(n; ﬁ)ll’] 25)
If M, is globally system identifiable under &y so that K = 1
in these equations, then the predictive PDFs for the output at
the observed and unobserved DOF at time ¢, are Gaussian
distributions. The mean (most probable) value is equal to the
output of the most probable model M(&) € M at that time and
the variance is ¢%, which describes the uncertainty in the pre-
dictions of this optimal model. If A, is only locally system
identifiable under @y so that X > 1 in these equations, the
asymptotic predictive PDF is not Gaussian, even though each
term in the sum in (22) and (24) is a Gaussian PDF [see (23)
and (25)]. In this case, the mean and variance of the predicted
system output s;(n) at an observed or unobserved DOF i at
time #, is given by

K
Elsin)] = ., wiqi(n; &%)

k=]

Var[s,(n)] = & + E weqi(n; &%) — E[si(n) (26)

k=1

Therefore, the mean system output is a weighted sum of the
outputs of each optimal structural model and the variance for
the system output is the sum of the prediction-error variance
and a contribution due to the lack of uniqueness in these mod-
els.

CONCLUSIONS

We have presented a general Bayesian statistical framework
that can be used for model updating. For a large number of
available data points and for a relatively small number of un-
certain structural and prediction-error parameters, the updated
probability distribution for these model parameters using
Bayes’ theorem is sharply peaked at isolated optimal values.
These parameter values are therefore much more plausible
than any other values. This leads to a natural criterion for
choosing the ‘“‘best’’ model parameters as the optimal ones,
which are also maximum likelihood estimates, that is, least-
squares estimates for the case presented here. Furthermore, it
is asymptotically correct for response predictions to use only
the optimal models corresponding to these optimal parameters
in an appropriate weighted average of their predictive PDFs.
This result is very important, since the high-dimensional in-
tegrations that are required to calculate the full Bayesian pre-
dictive PDF for the structural response can become computa-
tionally prohibitive, but the asymptotic research shows that
they can be replaced by a weighted sum over the predictive
probability distributions for each optimal model, assuming
their number is finite. This produces a computationally feasi-
ble, rigorous treatment of the nonuniqueness that can arise in
inverse problems such as model updating. It also means that
the well-known least-squares (maximum likelihood) approach
to parameter estimation can be viewed as the first step of an
asymptotic approximation to the full Bayesian solution for re-
sponse predictions, with the advantage that the asymptotic ap-
proximation shows how to proceed when there are multiple
maximum likelihood estimates.

The implementation of these asymptotic results requires so-
lution of the problem of finding the set of all optimal para-
meters for a given class of models. This problem is equivalent
to finding all the global maxima of a nonconvex function of
the model parameters and so it is a very challenging one. In
Katafygiotis and Beck (1998), an important step is made to-
ward solving this problem for a class of linear structural dy-
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namic models by presenting an algorithm to determine all the
models that are output-equivalent to a given model. It is also
shown that choosing just a single model, as usually done by
estimating the model parameters through optimal matching of
the model and measured responses at certain degrees of free-
dom, can lead to unreliable response predictions at the unob-
served degrees of freedom, when the model used is not glob-
ally identifiable.
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APPENDIX L.

First, we derive the asymptotic approximation (16) for the
first integral in (7) giving the updated predictive PDF for the
case of global system identifiability, that is, when there is a
unique optimal parameter . Denote the integral in (7) by I;
then

I= p(Y'f«'H, Xllulgbm k’m Mp) =c f h(a)fN(Y?’; «, lev) da

S(ox)

@7
where
h(a) = p(Yxs1, XV, Dy, ZV41, Mp)Ti(e) (28)
Substituting (14) into (27)
I=cf(f; &, 27)
'Lu) h(cexp E(a)exp (—% [a — &]"AN(&)[a — &]) da 29)

where Ay = Hessian matrix given by (15); and E(a) = error
in the second-order Taylor series expansion for In fN(Yﬁ’, o,
2%) about &, so E(@&) = 0. By applying Laplace’s method of
asymptotic expansion to this integral (Bleistein and Handels-
man 1986), an approximation for / is obtained

1 = 2m)"?Mecfi(PY; &, Z)h(@)| A" (30

where = denotes an approximation to O(N~'). Since c is given
by the integral in (10), which is the same as (27) except
ch(e) is replaced by w(a), it can also be approximated by

= W) Nf (P &, ZY)ym(é)|Av@é)| 3D
Substituting (28) and (31) into (30)
I = P(valﬂy Xﬂ&, By Zn+1r Mp) (32)

This proves (16) for the special case K = 1.

Now consider the case of local system identifiability where
K > 1. The integral (27) can be decomposed into a sum of K
integrals over the K disjoint subregions S,, k=1, ..., K, of
a partition of the parameter space S(a), where S, contains a

single optimal parameter &*, that is

X

=1 33)

k=1
where

IL=c j h@)fv(PY; a, 2V) da
Sk

= 2m)"cfu (P}, &®, ZV)nE®)|An@®)|™"? (34)



since the asymptotic approxnmatlon (30) can be applied to each
I,. Similarly, the integral in (10) for ¢™' can be approximated
by

o= (2m) EfN(Y a®, 2Nw(@®)|Ay@®)|™"* (35

By the definition of an optimal parameter, for each k =
LK

(¥ &%, 2 = mesx(x)fN(Yl"; a, ZY) (36)
o &£ 5o,
Eq. (16) with the weighting coefficients wy, k=1, ..., K, in

(18) follows by substituting (35) and (36) into (34), then sub-
stituting (34) into (33).

Finally, we show that the expression for the weighting co-
efficients in (18) can be simplified when some of the model
parameters o; in o are globally system identifiable. By renum-
bering if necessary, the model parameters a can be partitioned
into & = [07, ']", where 8 € R™, tlJERN'*andN + N, =
N,, so that each optimal parameter &% = [8%7, ¢, k = 1,

, K. This implies that each {;, and 6, are respectively glob-
ally and locally system identifiable under %y. Since the pa-
rameters ¥ are globally system identifiable at ¥, (32) can be
used to write

I == P(Yxﬂ, Xﬂ\i;, D, Zxﬂ; Mp)

= f p(Ya., x¥e, &, Dy, Z4.., Mp)pOIs, Dy, M,) dO
50, §)
(37

where the last equation follows from the Total Probability The-
orem. Using the previous asymptotic results, the integral in
(37) can be approximated by

K
1=, wp(Yife, XYO®, &, Dy, ZH.1, M1 + ONT)]  (38)
k=1
where
i
K
2
k=1

and the elements of the N, X N, Hessian matrix Cy(0) are
given by

;Wi = m@PN)|Cu@®®)| (39)

Wy =

3% In £ (7Y; 0, s, ZV)

[CN(G)]:'} == 86,89, (40)
It follows from (38) and (16) that
we=we; k=1,..., K 41

that is, the weightings associated with each optimal model can
be calculated using (18) where the matrix Ay is replaced by
its submatrix Cy made up of the elements that involve partial
differentiation only with respect to the locally identifiable pa-
rameters 0, while the values of the globally identifiable pa-
rameters are set equal to their optimal values {s. Also, notice
that the effect on the weighting coefficients of the initial prob-
ability distribution over the parameters can be represented by
w(®®[ds); that is, the initial PDF calculated at the optimal pa-
rameters can be replaced by the initial PDF of the locally
identifiable parameters conditional on the globally identifiable
parameters.
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