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Abstract: A spectral density approach for the identification of linear systems is extended to nonlinear dynamical systems usin
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Fast Fourier Transform and their robustness with respect to the probability distribution of the response signal in order to calcu
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is first presented for single-degree-of-freedom systems and then for multiple-degree-of freedom systems. Examples using simul
for a Duffing oscillator, an elastoplastic system and a four-story inelastic structure are presented to illustrate the proposed appr
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Introduction

The problem of system identification of structural or mechanic
systems using dynamic data has received much attention over
years because of its importance in response prediction, con
and health monitoring~Natke and Yao 1988; Housner et al
1997!. However, the results of system identification studies a
usually restricted to the ‘‘optimal’’ estimates of the model param
eters, whereas there is additional information related to the unc
tainty associated with these estimates which is very importa
For example, how precisely are the values of the individual p
rameters pinned down by the measurements made on the syst
Probability distributions may be used to describe this uncertain
quantitatively and so avoid misleading results~Beck 1990; Beck
and Katafygiotis 1998!. Also, if the identification results are used
for damage detection, this probability distribution for the ident
fied model parameters may be used to compute the probability
damage~Vanik et al. 2000!.

An important special case of system identification is where th
input is unknown so only response measurements are available
particular, this is the case in ambient vibrations surveys where
naturally occurring vibrations of a structure~due to wind, traffic,
microtremors and structural operations! are measured~Gersch
et al. 1976; Beck et al. 1994!. The uncertain input excitation is
usually modeled as a broadband stationary stochastic proc
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such as white noise. Usually a linear structural model is the
employed to estimate the parameters of the contributing modes
vibration.

System identification using linear models is appropriate for th
small-amplitude ambient vibrations of a structure that are con
tinuously occurring. There is, however, a number of cases in r
cent years where the strong-motion response of a structure h
been recorded but not the corresponding seismic excitation.
some cases, this is because of inadequate instrumentation of
structure and, in other cases, it is because the free-field or ba
sensors malfunctioned during the earthquake. For example, t
seismic response was recorded in several steel-frame buildings
Los Angeles which were damaged by the 1994 Northridge eart
quake, but an analysis of these important records has been ha
pered by the fact that the input~base motions! were not recorded
and also because of the strong nonlinear response.

A literature search reveals relatively few papers that deal wit
system identification using nonlinear models and measureme
of only the system response~Hoshiya and Saito 1984; Loh and
Tsaur 1988; Roberts et al. 1995; Zeldin and Spanos 1998!. In this
paper, this subject is tackled using a stochastic model for th
uncertain input and a Bayesian probabilistic approach to quanti
the uncertainties in the model parameters. This Bayesian prob
bilistic system identification framework was first presented for th
case of measured input~Beck 1990; Beck and Katafygiotis 1998;
Katafygiotis et al. 1998; Yuen and Katafygiotis 2002! and it has
been recently extended to the case of unknown input and line
structural models~Yuen 1999; Yuen and Katafygiotis 2001;
Katafygiotis and Yuen 2001; Yuen et al. 2002!. The proposed ap-
proach is spectral-based and utilizes important statistical prope
ties of the fast Fourier transform~FFT! and their robustness with
respect to the probability distribution of the response signal, e.g
regardless of the stationary stochastic model for this signal, i
FFT is approximately Gaussian distributed. The method allow
for the direct calculation of the probability density function~PDF!
for the parameters of a nonlinear model conditional on the me
sured response. The formulation is first presented for singl
degree-of-freedom~SDOF! systems and then for multiple-degree-
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of-freedom~MDDF! systems. Examples using simulated data
a Duffing oscillator, an elastoplastic system, and a four-story
elastic structure are presented to illustrate the proposed appr

Single-Degree-of-Freedom Systems

Bayesian System Identification Formulation

Consider a structural or mechanical system whose displace
responsex is modeled using a SDOF oscillator with equation
motion:

mẍ1 f s~x,ẋ;us!5 f ~ t ! (1)

wherem, us and f s(x,ẋ;us) are the mass~assumed known!, the
model parameters, and the nonlinear restoring force of the o
lator, respectively. Furthermore, the uncertain system inpu
modeled as a zero-mean stationary Gaussian random procf
with power spectral density functionSf(v;uf), whereuf denotes
the parameters of the stochastic process model for the excit
f (t). The observed system responsey is assumed to be stationa
and is modeled by

y~ t !5x~ t !1h~ t ! (2)

where the prediction errorh accounts for modeling errors~differ-
ences between the system behavior and the model! as well as
measurement noise. The uncertain prediction error is modele
independent zero-mean Gaussian white noise, so

Sy~v!5Sx~v!1Sh0 (3)

whereSy , Sx , and Sh0 are the power spectral densities for t
system response, model response and the prediction error
spectral density functionSx , or the corresponding autocorrelatio
function Rx , can be approximated by equivalent linearizat
methods~Roberts and Spanos 1990; Lutes and Sarkani 1997! or
by simulations.

Let ŶN5@ ŷ(0),ŷ(1),...,ŷ(N21)#T denote a vector consistin
of observed response data sampled at a time stepDt, where
ŷ(n)[ ŷ(nDt), n50, . . . ,N21. Herein, we are concerned wit
updating the uncertainty regarding the values of the model pa
eters a5@us

T ,uf
T ,sh0#T by using the dataŶN where sh0

2

52pSh0/Dt . From Bayes’ theorem, the updated~posterior! PDF
of the model parametersa given the dataŶN is

p~auŶN!5c1p~a!p~ŶNua! (4)

wherec15a normalizing constant andp(a)5the prior PDF de-
scribing our initial belief about the uncertain parameter valu
Note thatp(auŶN) can be used to give the relative plausibili
between two values of a based on measured dataŶN which does
not depend on the normalizing constantc1 . Also, the most prob-
able value ofa, denoted byâ ~the optimal parameter values!, is
given by maximizingp(a)p(ŶNua). For largeN, the likelihood
p(ŶNua) is the dominant factor on the right-hand side of Eq.~4!
and soâ is insensitive to the choice of the prior PDFp(a) as long
as the class of models is ‘‘globally identifiable’’ based on the d
ŶN ~Beck and Katafygiotis 1998!. In this case, a locally noninfor
mative prior~Box and Tiao 1973! can be chosen; in effect,p(a)
may be absorbed into the normalizing constantc1 in Eq. ~4!.

A difficulty with implementing this approach is establishin
the joint distributionp(ŶNua) for the response of the nonlinea
system. Note that the response is not Gaussian distributed bu
FFT of the response is~at least approximately!. We utilize this
property to obtain a response PDF in the next section.
10 / JOURNAL OF ENGINEERING MECHANICS / JANUARY 2003
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Bayesian Spectral Density Approach

Consider the stationary stochastic processy(t) and the discrete
estimator of its power spectral densitySy(v):

Sy,N~vk!5
Dt

2pN U(
n50

N21

exp~2 ivknDt !y~n!U2

(5)

where vk5kDv, k50, . . . ,N121 with N15INT(N/2), Dv
52p/T, andT5NDt. Here, INT denotes integer part. It can b
shown that the estimatorSy,N(vk) is asymptotically unbiased,
that is,

lim
N→`

E@Sy,N~vk!#5Sy~vk! (6)

where E@ .# denotes expectation~Yaglom 1987!. However, for
finite N, this estimator is biased. Calculating the expectation
the estimator in Eq.~5! yields

E@Sy,N~vk!#5
Dt

2pN (
n50

N21

gnRx~nDt !cos~nvkDt !1Sho . (7)

whereRx5the autocorrelation function of the responsex(t) and
gn is given by

gn5N, n50

gn52~N2n!, n>1 (8)

Note that the right-hand side of Eq.~7! can be calculated using
the FFT of the sequencegnRx(nDt), n50,1, . . . ,N21.

Based on the assumed stationarity ofy(t) and a type of the
central limit theorem, the real and imaginary part of the FFT
nonzero frequencies are Gaussian distributed with zero mea
N→` ~Brillinger 1969; Yajima 1989; Yuen et al. 2002!. There-
fore, the estimatorSy,N(vk), k51, . . . ,N121, has the following
asymptotic behavior:

lim
N→`

Sy,N~vk!5
1

2
Sy~vk!x2 (9)

wherex25a random variable having chi-square distribution wi
two degrees of freedom~i.e., exponential distribution! ~Yaglom
1987!. Therefore, the PDF of the random variableY(vk)
5 lim

N→`

Sy,N(vk) is asymptotically given by

p~Y~vk!ua!5
1

Sy~vk!
expF2

Y~vk!

Sy~vk!G (10)

whereSy(vk) depends on the model parameter vectora.
In the case of finiteN, it can be shown using simulations tha

for k!N1 , the PDF ofSy,N(vk) can be accurately approximate
by an exponential distribution in analogy to Eq.~10! except that
the meanSy(vk) is replaced byE@Sy,N(vk)# given by Eq.~7!.
Note that this approximation is very accurate regardless of
true probability distribution ofy(nDt), n51, . . . ,N ~Yajima
1989; Yuen et al. 2002!. This is due to the robustness of th
Gaussian approximation of the probability distribution of the FF
with respect to the probability distribution of the stationary r
sponse signal.

Furthermore, the random variablesSy,N(vk) and Sy,N(v,)
with kÞ, and k, ,!N1 , are uncorrelated asymptotically asN
→` ~Yuen et al. 2002!. Note that uncorrelated exponential ran
dom variables are independent~Yaglom 1987!. For largeN, this
property is approximately correct in a certain frequency range
particular, for a sufficiently small numberK,N1 , one can as-
sume that the random vectorSy,N

K 5@Sy,N(v1),...,Sy,N(vK)#T has
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all its elements approximately independently exponentially d
tributed. Therefore, its joint PDF can be approximated as follow

p~Sy,N
K ua!.)

k51

K
1

E@Sy,N~vk!#
expS 2

Sy,N~vk!

E@Sy,N~vk!# D (11)

where E@Sy,N(vk)# is given by Eq.~7! and it depends on the
model parameter vectora. In practice,vK can be chosen in the
range@1.5vr,2.0vr# wherevr is the frequency at which the pea
of the spectral estimatesŜy,N(vk) occurs. A more detailed discus
sion will be given in the numerical examples.

Given the observed dataŶN , one may substitute it into Eq.~5!

to calculate the corresponding observed spectral estimateŜy,N
K

5@Ŝy,N(v1),...,Ŝy,N(vK)#T. Using Bayes’ theorem, the update
PDF of the model parametersa given the dataŜy,N

K follows from
an analogy to Eq.~4!:

p~auŜy,N
K !5c2p~a!p~Ŝy,N

K ua!. (12)

wherec25a normalizing constant, and the likelihoodp(Ŝy,N
K ua) is

given by Eq.~11! where eachSy,N(vk) is replaced byŜy,N(vk),
and E@Sy,N(vkua)# is calculated from Eq.~7! where Rx(nDt)
5Rx(nDtua) may be calculated by equivalent linearization met
ods or by simulation. The optimal parametersâ are obtained by
minimizing the objective functionJ(a)52 ln@p(a)p(Ŝy,N

K ua)#.
For the results in this paper, this optimization is done using
MATLAB function ‘‘fmins’’ ~MATLAB1994!.

In the case where several independent time histo
ŶN

(1) ,...,ŶN
(M ) are available, the estimation can proceed by cal

lating the corresponding estimatesŜy,N
K,(1) ,...,Ŝy,N

K,(M ) and then cal-
culating the updated PDF

p~auŜy,N
K,~1! ,...,Ŝy,N

K,~M !!5c3p~a!)
n51

M

p~Ŝy,N
K,~n!ua! (13)

wherep(Ŝy,N
K,(n)ua) is given by Eq.~11!.

Note that in the proposed approach, each set of data can
respond to a different time durationT and different sampling time
intervalDt and Eq.~13! automatically takes care of the weightin
for different sets of data.

Multiple-Degree-of-Freedom Systems

Model Formulation

Consider a system withNd degrees of freedom~DOFs! whose
displacement responsex(t)PRNd is modeled using the equation
of motion:

Mẍ1fs~x,ẋ;us!5Tf ~ t ! (14)

whereMPRNd3Nd5the ~known! mass matrix,fsPRNd5the non-
linear restoring force characterized by the structural parame
us , TPRNd3Nf5a force distribution matrix, andf(t)PRNf5an
external excitation~e.g., force or ground acceleration! modeled by
a stationary Gaussian process with zero mean and spectral de
matrix function characterized by the excitation parametersu f :

Sf~v!5Sf~v;uf ! (15)

Assume now that discrete response data are available
No(<Nd) observed DOFs. LetDt denote the sampling time step
Because of measurement noise and modeling errors, the mea
responsey(n)PRNo ~at time t5nDt) will differ from the model
-

ty

r

d

responseq(n), e. g., model displacement or model acceleratio
calculated at the observed DOFs from Eq.~14!. This difference
between the measured and model response, called predi
error, is modeled as a discrete zero-mean Gaussian white n
vector processh(n)PRNo so

y~n!5q~n!1h~n! (16)

where the discrete processh is independent ofq and satisfies

E@h~n!hT~p!#5Ghdnp (17)

whereE@ .#5expectation,dnp5the Kronecker delta function, and
Gh5the No3No covariance matrix of the prediction–error pro
cessh.

Let a denote the parameter vector for identification; it includ
the following parameters:~1! the structural parametersus ; ~2! the
excitation parametersuf ; and~3! the elements of the upper righ
triangular part ofGh ~symmetry defines the lower triangular pa
of this matrix!. As in the SDOF case, we apply Bayes’ theorem
update the uncertainty regarding the values of the model par
etersa based on the spectral density estimates.

Spectral Density Estimator and its Statistical
Properties

Consider the stationary stochastic vector processy(t) and a finite
number of discrete dataYN5$y(n),n50, . . . ,N21%. Based on
YN , we introduce the following discrete estimator of theNo

3No spectral density matrix of the stochastic processy(t):

Sy,N~vk!5YN~vk!ȲN
T~vk! (18)

where z̄5the complex conjugate of a complex variablez and
YN(vk)5the ~scaled! discrete Fourier Transform of the vecto
processy at frequencyvk , as follows:

YN~vk!5A Dt

2pN (
n50

N21

y~n!exp~2 ivknDt ! (19)

where vk5kDv, k50, . . . ,N121 with N15INT(N/2), Dv
52p/T, andT5NDt. Note thatSy,N(vk) contains estimates o
the autospectral densities in its diagonal elements and estimat
the cross-spectral densities in its off-diagonal elements. Note
that Eq.~5! is a special case of Eqs.~18! and ~19!.

Using Eqs.~16! and taking expectation of Eq.~18! ~noting that
q andh are independent! yields

E@Sy,N~vk!ua#5E@Sq,N~vk!ua#1E@Sh,N~vk!ua# (20)

whereSq,N(vk) andSh,N(vk) are defined in a manner similar t
that described by Eqs.~18! and ~19!. It easily follows from Eqs.
~17! and ~18! that

E@Sh,N~vk!ua#5
Dt

2p
Gh[Sh0 (21)

The termE@Sq,N(vk)ua# in Eq. ~20! can also be evaluated b
noting thatSq,N(vk) has elements:

Sq,N
~ j ,, !~vk!5

Dt

2pN (
n,p50

N21

qj~n!q,~p!e2 ivk~n2p!Dt (22)

Grouping together terms having the same value of (p2n) in Eq.
~22!, and taking expectation, we obtain the following expressio
JOURNAL OF ENGINEERING MECHANICS / JANUARY 2003 / 11
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E@Sq,N
~ j ,, !~vk!ua#5

Dt

4pN (
n50

N21

gn@Rq
~ j ,, !~nDtua!e2 ivknDt

1Rq
~ j ,, !~2nDtua!eivknDt# (23)

where gn is given by Eq.~8! and Rq
( j ,,)5the cross-correlation

functions between thej th and,th component of the model quan
tity q. However, it is usually not possible to obtain the correlat
functions theoretically. In this case, for givena, we can simulate
samples of the response using Eqs.~14! and ~15! and hence cal-
culate their spectral density estimates in a similar manner to
described in Eqs.~18! and~19!. Then, rather than using Eq.~23!,
the expected values of the spectral estimates can be approxim
by the average of the spectral density estimators obtained
the samples.

Next, we discuss the statistical properties of the estim
Sy,N(vk). Denote byYN,R(vk) andYN,I(vk) the real and imagi-
nary part, respectively, ofYN(vk), that is,YN(vk)5YN,R(vk)
1 iYN,I(vk). SinceY(vk)N is zero-mean and asymptotically
Gaussian vector fork51, . . . ,N121 ~Brillinger 1969; Yajima
1989; Yuen et al. 2002!, bothYN,R(vk) andYN,I(vk) are also
zero-mean Gaussian vectors asN→`. Furthermore, in the limit
when N→`, the covariance matrix of the vecto
@YN,R

T (vk),YN,I
T (vk)#T has the form~Yuen 1999!:

CN~vk!5F CN,1~vk! CN,2~vk!

2CN,2~vk! CN,1~vk!
G (24)

Eq. ~24! states that the real and imaginary part ofYN(vk) have
equal covariance matricesCN,1(vk) for k51, . . . ,N121, i.e., ex-
cluding the zero and Nyquist frequencies. Also, it states that
cross covariance between the real and imaginary part has
property CN,2

T (vk)52CN,2(vk), i.e., E@YN,R
( j ) (vk)YN,I

(,) (vk)#
52E@YN,R

(,) (vk)YN,I
( j ) (vk)#. The latter property implies als

that the diagonal elements ofCN,2 are equal to zero, i.e.
E@YN,R

( j ) (vk)YN,I
( j ) (vk)#50, for every j and vk . Because of Eq

~24!, the complex vectorYN(vk) is said to have a complex mu
tivariate normal distribution~Krishnaiah 1976! asN→`.

Assume now that there is a set of independent, identic
distributed, time historiesYN

(1) ,...,YN
(M ) . As N→`, the corre-

sponding Fourier transformsYN
(n)(vk), n51, . . . ,M , are inde-

pendent and follow an identical complexNo-variate normal dis-
tribution with zero mean fork51, . . . ,N121. Then, if M>No ,
the average spectral density estimate~an No3No Hermitian ma-
trix!:

Sj ,N
M ~vk!5

1

M (
n51

M

Sy,N
~n! ~vk!5

1

M (
n51

M

YN
~n!~vk!ȲN

~n!T~vk!

(25)

follows a central complex Wishart distribution of dimensionNo

with M DOF and mean E@Sy,N
M (vk)#5E@Sy,N(vk)#

52@CN,1(vk)2 iCN,2(vk)# as N→` ~Krishnaiah 1976!. The
PDF of this distribution is given by

p~Sy,N
M ~vk!!5c4

uSy,N
M ~vk!uM2No

uE@Sy,N~vk!#uM

3exp~2Mtr $E@Sy,N~vk!#21Sy,N
M ~vk!%!

(26)

wherec45a normalizing constant anduAu and tr @A# are the de-
terminant and the trace, respectively, of a matrixA. Note that this
approximation is very accurate even ify(nDt), n50, . . . ,N
12 / JOURNAL OF ENGINEERING MECHANICS / JANUARY 2003
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21, is not Gaussian. Again, this is due to the robustness of
Gaussian approximation of the FFT irrespective of the probabi
distribution of the stationary response signal.

Also, note that in the special case of a SDOF oscillator or
the case of a MDOF system with only one set of data at o
measured DOF (M51 andNo51), the distribution in Eq.~26!
becomes an exponential distribution and so reduces to Eq.~10!.

Furthermore, whenN→`, the vectors@YN,R
T (vk),YN,I

T (vk)#T

and @YN,R
T (v,),YN,I

T (v,)#T with vkÞv, are independent~Yuen
et al. 2002!. This causes the complex vectorsYN(vk) and
YN(v,) to be independent~asN→`). As a result, the matrices
Sy,N

M (vk) andSy,N
M (v,) are independently Wishart distributed fo

kÞ,, that is,

p@Sy,N
M ~vk!,Sy,N

M ~v,!#5p@Sy,N
M ~vk!#p@Sy,N

M ~v,!# (27)

where the two right-hand side factors are given by Eq.~26!. Al-
though Eqs.~26! and ~27! are correct only asymptotically asN
→`, it was shown by simulations that these are indeed v
accurate approximations in a certain bandwidth of frequencies
the case whereN is finite ~Yuen 1999!. In the case of displace-

Fig. 1. Conditional updated probability density functio

p(k1 ,k3uŜy,N
K,(1) ,c̃,S̃f o

(1) ,s̃ho
(1)) ~Example 1!

Fig. 2. Conditional updated probability density functio

p(k1 ,k3uŜy,N
K,(n) ,c̃,S̃f o

(n) ,s̃ho
(n)), n51,2 ~Example 1!



Table 1. Comparison of Actual Parameters Versus Optimal Estimates and Their Statistics for Duffing Oscillator~Example 1!

Parameter Actualã Optimal â Standard deviations
COV a5

s

ã
b5

uã2âu
s

c 0.1000 0.1021 0.0108 0.108 0.20

k1 4.0000 3.9420 0.0463 0.012 1.25
k3 1.0000 0.9868 0.1295 0.130 0.10
Sf o

(1) 0.0100 0.0098 0.0005 0.046 0.41
Sf o

(2) 0.0400 0.0454 0.0020 0.051 2.64
sho

(1) 0.0526 0.0514 0.0022 0.042 0.55
sho

(2) 0.1092 0.1025 0.0045 0.041 1.49
t

ti

e

te

d

e

d
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ments~or accelerations!, such range of frequencies corresponds
the lower- ~or higher-! frequency rangevkP@v1 ,vK# ~or
@vK ,vN121#).

Identification Based on Spectral Density Estimates

Based on the aforementioned discussion regarding the statis
properties of the average spectral estimatorSy,N

M (vk), a Bayesian
approach for updating the PDF of the uncertain parameter vec
a is proposed as follows: GivenM>N0 ~whereN05the number
of observed DOF! independent sets of observed dataŶN

(n) , n
51, . . . ,M , one may calculate the corresponding observed sp
tral estimate matricesŜy,N

(n) , n51, . . . ,M using Eqs.~18! and
~19!. Next, one can calculate the average matrix estima
Ŝy,N

(M )(vk) using Eq. ~25! and then form the setŜy,N
M ,K

5$Ŝy,N
M (kDv), k51, . . . ,K%, whereK is an integer sufficiently

smaller thanN15INT(N/2). Using Bayes’ theorem, the update
PDF of the model parametersa, given the dataŜy,N

M ,K , is then
given by

p~auŜy,N
M ,K!5c5p~a!p~Ŝy,N

M ,Kua! (28)

where c55a normalizing constant such that the integral of th
right-hand side of Eq.~28! over the domain ofa is equal to one.
The factorp(a) in the Eq.~28! represents the prior PDF, which
expresses the relative plausibilities of different values of a bas
-
Fig. 3. Conditional probability density function ofk1 andk3 calcu-
lated using:~1! Eq. ~13!—crosses; and~2! Gaussian approximation—
solid. The remaining parameters are fixed at their optimal values.
Fig. 4. Contours in the (k1 ,k3) plane of conditional updated prob

ability density functionp(k1 ,k3uŜy,N
K,(1) ,Ŝy,N

K,(2) ,ĉ,Ŝf o
(1) ,Ŝf o

(2) ,ŝho
(1) ,ŝho

(2))
~Example 1!.
o

cal

tor

c-

s

ed

on prior information and engineering judgment. The likelihoo
factor p(Ŝy,N

M ,Kua) expresses the contribution of the observed da
Based on Eqs.~26! and ~27!, this factor can be calculated a
follows:

p~Ŝy,N
M ,Kua!.c6)

k51

K uŜy,N
M ~vk!uM2N0

uE@Sy,N~vk!ua#uM

3exp~2M tr $E@Sy,N~vk!ua#21Ŝy,N
M ~vk!%!

(29)

where E@Sy,N(vk)ua# is given by Eqs. ~20! and ~21! with
E@Sq,N(vk)ua# estimated by simulation as explained earlier. It
suggested to choosevK such that the frequency range just in
cludes all of the peaks of the spectral density estimates. A m
detailed discussion will be given in the third example.

The most probable parametersâ are obtained by minimizing
the objective functionJ(a)52 ln@p(a)p(Ŝy,N

M ,Kua)#. Furthermore,
for large amounts of data~large productKN0M ), the updated
PDF p(auŜy,N

M ,K) can be approximated by a Gaussian distributi
centered at the optimal pointâ if it is globally identifiable~Beck
and Katafygiotis 1998!. The corresponding covariance matrixGa

is equal to the inverse of the Hessian matrix of the functi
J(a)52 ln@p(auŜy,N

M ,K)# calculated at a5â, i.e., Ga5H(â)21

where H j ,(â)5]2J(a)/]aj]a,ua5â . In the results presented in
JOURNAL OF ENGINEERING MECHANICS / JANUARY 2003 / 13
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Fig. 5. Relationship between restoring force and displacement
system~Example 2!.
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Fig. 6. Hysteresis loops of simulated data~Example 2!
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this paper, this Hessian matrix is calculated using a finite dif
ence method. This Gaussian approximation provides a very
cient way for the quantification of the uncertainty for the mod
parameters without evaluating high-dimensional integrals. Ho
ever, it is not always a very accurate approximation, e.g., in u
dentifiable cases. One check is to assume that the Gaussia
proximation is accurate and calculate some lower-dimensio
conditional PDFs and compare them with the values calcula
from Eq. ~28!. If they match well, then the approximation can b
used. If they do not match, simulation methods may be used~e.g.,
Beck and Au 2002! to calculate the associated uncertainties
the parameters.

Numerical Examples

Example 1: Duffing Oscillator

In this example, we consider a SDOF Duffing oscillator of know
massm subjected to zero-mean stationary Gaussian white n
f (t) with spectral intensitySf o :

mẍ~ t !1cẋ~ t !1k1x~ t !1k3x3~ t !5 f ~ t ! (30)

To simulate noisy data, the stationary displacement respo
history ŶN

(1) was generated with parameters ã
5@ c̃,k̃1 ,k̃3 ,S̃f o

(1) ,s̃ho
(1)#T where m51 kg, c̃50.1 kg/s, k̃1

54.0 N/m, k̃351.0 N/m3, S̃f o
(1)50.01 N2 s and s̃ho

(1)50.0526 m
~20% noise!. The sampling interval isDt50.1 s, with total time
T51,000 s, soN510,000.

Multiplying Eq. ~30! with x(t2t) and taking expectation
yields

mRx9~t!1cRx8~t!1k1Rx~t!1k3E@x~ t2t!x3~ t !#50 (31)
-
-
p-
l

d

e

e

where Rx(t)[E@x(t2t)x(t)#, ;tPR. The term E@x(t
2t)x3(t)# can be approximated by neglecting the fourth cum
lant term, that is, E@x(t2t)x3(t)#'3sx

2Rx(t), where sx
2

5Rx(0) is the variance of the response~Lutes and Sarkani 1997!.
Therefore, a differential equation for an approximation of the
sponse autocorrelation function can be readily obtained:

mRx9~t!1cRx8~t!1~k113sx
2k3!Rx~t!50 (32)

with Rx(0)5sx
2 and Rx8(0)50. Eq.~32! is a second-order ord

nary differential equation with constant coefficients, which can
solved analytically. Then,E@Sy,N(vk)ua# can be obtained for
given parameter vectora by using Eq.~7!. Finally, the updated
PDFp(auŜy,N

K,(1)) is readily obtained using Eqs.~5!, ~11!, and~12!,
where we takep(a) as constant over the region wherep(Ŝy,N

K,(1)ua)
is large, i.e., a locally noninformative prior PDF~Box and Tiao
1973!.

Fig. 1 shows the conditional posterior PD
p(k1 ,k3uŜy,N

K,(1) ,c̃,S̃f o
(1) ,s̃ho

(1)) normalized in such a way that th
peak value is unity, which is obtained by utilizing only the sp
tral estimates up to frequencyvK51.0 Hz (K51,000). Note tha
the small-amplitude natural frequency of the oscillator
1/p Hz'0.32 Hz. It is obvious that this case is unidentifiab
i.e., given one set of dynamic data, the estimates ofk1 and k3

suffer from large uncertainty as there are infinitely many com
nations ofk1 and k3 which give similar values for the posteri
PDF.

Another time history data setŶN
(2) was generated for the sam

oscillator ~same c̃, k̃1 , and k̃3) but with S̃f o
(2)50.04 N2 s and

s̃ho
(2)50.1092 m~20% noise!. This case is, again, unidentifiab
Table 2. Identification Results for Elastoplastic System with Theoretical Spectrum Estimated by Equivalent Linearization~Example 2!

Parameter Actualã Optimal â Standard deviations
COV a5

s

ã
b5

uã2âu
s

k1 16.000 15.827 0.1162 0.007 1.49

xy 1.0000 1.3493 0.4818 0.482 0.72
sx 0.6029 0.5762 0.1437 0.238 0.19
sho 0.1206 0.1376 0.0209 0.173 0.82
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Fig. 7. Contours of conditional updated probability density functi

p(k1 ,xyuŜy,N
K ,ŝx ,ŝho) with the theoretical spectrum estimated

equivalent linearization~Example 2!
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Fig. 9. Contours of conditional updated probability density functio

p(xy ,sxuŜy,N
K ,k̂1 ,ŝho) with the theoretical spectrum estimated b

equivalent linearization~Example 2!
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However, if we plot these two posterior PDFs together~shown in
Fig. 2!, the peak trajectories in the (k1 ,k3) plane have different
slopes. By Eq.~32!, the equivalent linear system has a stiffne
k113sx

2k3 . Therefore, the autocorrelation coefficients depend
sx and, hence, the level of excitationSf 0 , showing that different
levels of excitation lead to different slopes of the peak trajector
in the (k1 ,k3) plane. Since the coefficient 3sx

2 is always positive,
the slope of the peak trajectories in the (k1 ,k3) plane is always
negative. This is expected because a larger value ofk1 can com-
pensate for a smaller value ofk3 , and vice versa.

Fig. 2 suggests that if we use the two dynamic data setsŶN
(1)

and ŶN
(2) together, uncertainty ink1 and k3 can be significantly

reduced. Table 1 shows the estimated optimal valuesâ
5@ ĉ,k̂1 ,k̂3 ,Ŝf o

(1) ,Ŝf o
(2) ,ŝho

(1) ,ŝho
(2)#T and the calculated standard de

viations sc , sk1
, sk3

, sSf o
(1), sSf o

(2), ss
ho
(1), and ss

ho
(2) obtained

using both data setsŶN
(1) andŶN

(2) . It also gives the coefficient of
variation ~COV! for the parameter estimates and a ‘‘normaliz
error’’ b. This normalized error parameter represents the abso
F
.
al-
give

t its
one-
h are
. 4.
r the
tion
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ia-
the
the

n
nsity
e

value of the difference between the identified optimal value
exact value, normalized with respect to the corresponding ca
lated standard deviation. The COVs in Table 1 are all quite sm
showing that the parameter values are pinned down rather
cisely by the data. The normalized errorsb in Table 1 are of the
order of 2 or less, suggesting that the procedure is not produ
‘‘biased’’ estimates, that is, the errors are not unusually la
compared to the calculated standard deviations.

Fig. 3 shows the conditional updated PD
p(k1uŜy,N

K,(1),Ŝy,N
K,(2) ,ĉ,k̂3 ,Ŝf o

(1) ,Ŝf o
(2) ,ŝho

(1) ,ŝho
(2)) and p(k3uŜy,N

K,(1) ,
Ŝy,N

K,(2) ,ĉ,k̂1 ,Ŝf o
(1) ,Ŝf o

(2) ,ŝho
(1) ,ŝho

(2)), obtained from: ~1! Eq. ~13!
~crosses! and ~2! the Gaussian approximation~solid line!. It can
be seen that the asymptotic Gaussian approximation is very a
rate because 2,000 data points are involved in the likelihood f
tion given by Eq.~13!. This property provides a very efficien
way for the quantification of the uncertainty for the model para
eters, especially since the evaluation of high-dimensional i
grals is not straightforward.

Fig. 4 shows nearly elliptical contours~solid lines! in the
(k1 ,k3) plane of the conditional updated PD
p(k1 ,k3uŜy,N

K,(1) ,Ŝy,N
K,(2) ,ĉ,Ŝf o

(1) ,Ŝf o
(2) ,ŝho

(1) ,ŝho
(2)) calculated using Eq

~13! ~keeping all the other parameters fixed at their optimal v
ues!. These contours correspond to the parameter sets, which
80, 60, 40, 20, 10, and 5% of the conditional PDF values a
peak. Furthermore, by using the Gaussian approximation, the
and two standard deviations contours can be calculated, whic
shown by a dotted line and a dashed line, respectively, in Fig
One can see that the orientation of the ellipses is the same fo
two groups of contours, showing that the Gaussian approxima
is very accurate in this case. Note that the optimal param
values fork1 and k3 seem to be more than two standard dev
tions away from their actual values because Fig. 4 shows
conditional PDF, not the marginal PDF. Table 1 shows that
optimal estimates and actual values ofk1 andk3 are much closer
than two standard deviations.

The estimation of the model parametersus is not sensitive to
the choice of the cutoff frequencyvK as long as it is larger tha
the frequency at which the peak of the response spectral de
Fig. 8. Power spectral estimates using measurements~Example 2!
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Table 3. Identification Results for Elastoplastic System with Theoretical Spectrum Estimated by Simulation~Example 2!

Parameter Actualã Optimal â Standard deviations
COV a5

s

ã
b5

uã2âu
s

k1 16.000 15.984 0.0433 0.003 0.36

xy 1.0000 1.0918 0.0732 0.073 1.25
Sf o 0.1500 0.1376 0.0136 0.091 0.91
sho 0.1206 0.1359 0.0201 0.166 0.76
w
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estimates occurs. Identification using the same sets of data
also carried out withvK55.0 Hz ~the Nyquist frequency, in this
case!. The results were virtually the same as those usingvK

51.0 Hz except that there were significant reductions in the u
certainty of the noise levels. That is, utilizing a largervK gives
better estimates for the noise level only. Therefore, it is sugges
that one chooses anvK ranging from 1.5vr to 2 vr wherevr is
the frequency at which the peak of the spectral estimatesŜy,N(vk)
occurs. It is computationally efficient to use such values ofvK

without sacrificing the quality of the identification for the mode
parametersus .

Example 2: Elastoplastic Oscillator

In this example, we consider an elastoplastic SDOF oscillator
known massm subjected to zero-mean stationary Gaussian wh
noise f (t) with spectral intensitySf o :

mẍ~ t !1 f s~x~ t !!5 f ~ t ! (33)

where f s(x(t))5the restoring force of the system. The restorin
force–displacement relationship is shown in Fig. 5. To simula
noisy data, the displacement response historyŶN was generated
with parameters ã05@ k̃1 ,x̃y ,S̃f o ,s̃ho#T where m51 kg, k̃1

516.0 N/m,x̃y51.0 m, S̃f o50.15 N2 s ands̃ho50.1206 m~20%
noise!. The sampling rate interval isDt50.05 s, with a total time
T5200 s, that is,N54,000. The hysteresis loops of the simulate
data are shown in Fig. 6. Note that these hysteresis loops are
assumed to be measured; they are shown here only for illustra
purposes. Note also that in this case, the displacement respon
y n

g

Fig. 10. Contours of conditional updated probability densit

function p(k1 ,xyuŜy,N
K ,ŝx ,ŝho) with theoretical spectrum estimated

by simulation~Example 2!
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Fig. 11. Contours of conditional updated probability density functio

p(xy ,Sf ouŜy,N
K ,k̂1 ,ŝho) with theoretical spectrum estimated usin

simulation~Example 2!
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not perfectly stationary~Lutes and Sarkani 1997!, but we show
that the proposed identification method still produces satisfac
results.

The equivalent linear system has the following equation
motion:

mẍ~ t !1b2ẋ~ t !1b1x~ t !5 f ~ t ! (34)

whereb1 andb2 are given by~Iwan and Lutes 1968; Lutes an
Sarkani 1997!:

b15k1H 12
8

p E
1

`F 1

z3 1
xy

2

2sx
2z

Az21 expS 2
xy

2z2

2sx
2 D GdzJ

b25A m

2pb1

k1xy

sx
F12erfS xy

&sx
D G (35)

Note that the calculation ofb1 andb2 requiressx
2, the variance of

the response. Althoughsx can be determined from the spectr
intensity of the excitationSf o , it is computationally more efficien
to include sx directly instead ofSf o in the parameter vector
Therefore, the parameter vectora5@k1 ,xy ,sx ,sho#T is identified
instead ofao in this case. Then,E@Sy,N(vk)ua# can be obtained
given parameter vectora by using Eq.~7! where Rx(nDt) is
approximated by the autocorrelation function for the equival
linear system given by Eqs.~34! and ~35!. Finally, the updated
PDF p(auŜy,N

K ) is readily obtained using Eqs.~5!, ~11!, and~12!.
Note that a locally noninformative prior distribution is used, as
Example 1.

Table 2 shows the estimated optimal valuesâ
5@ k̂1 ,x̂y ,ŝx ,ŝho#T and the calculated standard deviationssk1

,



Fig. 12. Four-story inelastic structure~Example 3!
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Fig. 14. Hysteresis loops for fourth story~Example 3!
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obtained using the single data setŶN . Fig. 7

shows contours in the (k1 ,xy) plane of the conditional update
PDF p(k1 ,xyuŜy,N

K ,ŝx ,ŝho) calculated for one set of simulate
data from Eq.~13! ~keeping all the other parameters fixed at th
optimal values!. For these results, only the spectral estimates
to frequencyvK51.25 Hz (K5250) were used. Note that th
small-amplitude frequency of the oscillator is 2/p Hz'0.63 Hz.
Again, vK can be chosen between 1.5vr and 2.0vr , as in
Example 1, where from Fig. 8, the spectral estimates peak avr

'0.65 Hz.
Fig. 9 shows a similar plot to Fig. 7 but in the (xy ,sx) plane.

It can be seen that the contours are very thin lying on the
sx5a1xy1a2 , wherea1'0.28 anda2'0.2, showing that the
estimates of these parameters are very correlated. This is be
b1 andb2 in Eq. ~34! depend onm, k1 , andxy /sx only. The only
factor that makesxy andsx identifiable comes from the amplitud
of the spectrum, which is proportional tosx

2. This also explains
why the uncertainty forxy and sx is so large when utilizing
equivalent linearization. Note from Table 2 that the actual val
of the parametersx̃y and s̃x are within one standard deviatio
from their optimal valuesx̂y and ŝx , respectively, but the actua
DF

an
ard

lent

tory
gs
Ex-

he
p

e

use

s

parameters in the (xy ,sx) plane lie far outside the two standar
deviations contour in Fig. 9. This is because Fig. 9 shows
conditional PDF, not the marginal PDF.

Table 3 shows the identification results using the same se
data with the theoretical spectrum estimated by simulation, rat
than by using Eqs.~34! and ~35!. Note that in this case, the un
certain parameter vector isao5@k1 ,xy ,Sf o ,sho#T, i.e., it includes
the spectral intensity of the excitation instead of the root-mea
square~rms! of the response, because this is more efficient for t
simulation of the system response. Here, for given parameter
ues, 100 samples of spectral estimates are simulated using E
tions ~33!, ~2!, and ~5! and the theoretical spectrum is approx
mated by the average of them. One can see that it gives m
precise optimal parameter values than those in Table 2, espec
for xy , by comparing the respective COVs. This is because
equivalent linear system can not completely capture the dynam
of the nonlinear oscillator. Therefore, the results obtained
using an equivalent linear system lose some information from
data, suggesting that for the identification of highly nonlinear sy
tems, the simulation approach is the preferred one. Although
response of the system is slightly nonstationary, the proposed
proach still gives good results.

Figs. 10 and 11 show contours of the conditional updated P
p(k1 ,xyuŜy,N

K ,ŝx ,ŝho) andp(xy ,Sf ouŜy,N
K ,k̂1 ,ŝho), respectively,

with all the other parameters fixed at their optimal values. It c
be seen that the optimal parameter set is within two stand
deviations away from the actual parameter set in both the (k1 ,xy)
and (xy ,Sf o) planes, whereas this was not the case in the (xy ,sx)
plane when the theoretical spectrum was estimated by equiva
linearization~see Fig. 9!.

Example 3: Four-Story Inelastic Structure, White-Noise
Excitation

The third example uses simulated response data for a four-s
inelastic shear building shown in Fig. 12. The nonlinear sprin
have the same inelastic behavior as described in Fig. 5 in
ample 2. The structure has uniformly distributed floor massmj

5160 ton, j 51, . . . ,4, anduniformly distributed story stiffness
over its height. The linear stiffness to mass ratiosk̃ j /mj , j
51, . . . ,4, arechosen to be 1,310 s22 so that the small-amplitude
fundamental frequency is 2.00 Hz. Furthermore, t
Fig. 13. Displacement measurements at second and fifth floor~Ex-
ample 3!
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Table 4. Identification Results for Four-Story Inelastic Shear Building with White-Noise Excitation~Example 3!

Parameter Actualã Optimal â Standard deviations
COV a5

s

ã
b5

uã2âu
s

u1 1.0000 1.0122 0.0097 0.010 1.26

u2 1.0000 0.9907 0.0089 0.009 1.04
u3 1.0000 0.9903 0.0103 0.010 0.95
u4 1.0000 0.9947 0.0078 0.008 0.69
uy 1.0000 0.9577 0.0533 0.053 0.79
Sf o 0.0060 0.0076 0.0008 0.132 2.03
sh1 0.0022 0.0022 0.0001 0.047 0.03
sh2 0.0063 0.0062 0.0002 0.040 0.41
ee

ies
th

only
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e
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rum
yielding level is chosen to bex̃y50.015 m for each story, which
corresponds to 0.5% drift if the story height is 3.0 m. For better
scaling in the identification process, the stiffness and yielding
parameters are parameterized by:kj5u j k̂ j , j 51, . . . ,4, andxy

5uyx̃y , where k̃ j52.103105 kN/m and x̃y50.015 m are the
nominal values for the linear stiffness of thej th story and the
nominal yielding level for all four stories. The structure is as-
sumed to be subjected to a white-noise base accelerationf with
spectral intensitySf 050.006 m2 s23. Note that the matrixT in
Eq. ~14! is equal to the 431 matrix 2@m1,m2,m3,m4#T in this
case. Therefore, the model parameter vector for identification is
a5@u1 ,u2 ,u3 ,u4 ,uy ,Sf 0 ,sh1 ,sh2#T

To simulate noisy data, displacements at the second and fifth
floors, i.e., atx1 and x4 , were generated over a time intervalT
525 s, using the exact parameter valuesã. A sampling interval
Dt50.01 s was used, so the total number of measured time points
is N52,500. The noise added to the simulated response had a
noise-to-signal ratio of 10%, i.e., the rms of the noise for a par-

ticular data channel is equal to 10% of the rms of the noise-fr
response at the corresponding DOF.

Fig. 13 shows the simulated noisy displacement time histor
at x1 andx4 , and Fig. 14 shows the hysteresis loops for the four
story, that is, the restoring forcef s4(t) normalized bym4 versus
the interstory displacementx4(t)2x3(t). Note that these hyster-
esis loops are not assumed to be measured; they are shown
for the purpose of illustrating the level of nonlinearity. Note als
that the nonlinearity in the other stories is even higher. The tim
histories were separated into five segments (M55) with equal
length in order to average five sets of spectral estimates. Re
that the expected value of the spectral density matrix estima
E@Sy,Nua#, is obtained by the following procedure. First, simulat
100 system responses for the model parametersa. Then, by using
Eqs.~18! and ~19!, 100 samples of the spectral estimates can
obtained. By averaging these 100 samples for each discrete
quency, one obtains an estimate of the expected spect
E@Sy,Nua#.
Fig. 15. Autospectral and cross-spectral estimates~zigzag! and their expected values~smooth! ~Example 3!
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Fig. 16. Contours of conditional updated probability densi
function in (u1 ,u2) plane, keeping all other parameters at the
optimal values~Example 3!
ral

ond
en

urth
th
mn
last

th
ble

ned
s
no

s-
ate

te

as
red
te

tral

sed
the

up-
ems
d ap-
n for
e-
sity
on
f dy-
tem
ut.
pa-

the
-

e

e

t

s

d

estimates. One can see that the identified expected spectral
sities fit all the peaks of the corresponding spectral densities
timated from the measurements for both floors.

Fig. 16 shows the contours in the (u1 ,u2) plane of the condi-
tional updated PDF ofu1 and u2 ~keeping all other parameter
fixed at their optimal values!. One observes that the actual para
eters are at a reasonable distance, measured in terms of the
mated standard deviations, from the identified optimal para
eters.

Example 4: Four-Story Inelastic Structure, Nonwhite
Excitation

In this example, the same structure as in Example 3 is subje
to nonwhite excitation given by filtered white noise with th
Kanai–Tajimi spectrum~Clough and Penzien 1975!:

Sẍgẍg
5Sf 0

4zg
2vg

2v21vg
4

~v22vg
2!214zg

2vg
2v2 (36)

where the filter parameters are chosen asvg55p rad/sec and
zg50.5. Identification is repeated under the same conditions
the previous case, except that the white-noise excitation is filte
by the Kanai–Tajimi filter before applying it to the structure. No
that the parameter vector a now also includesvg andzg in addi-
tion to the eight parameters in Example 3.

Table 5 shows the identification results utilizing the spec
estimates up tovK516.0 Hz (K580). Again, a noninformative
prior distribution for the model parameters is used. The propo
method can successfully identify the structural parameters and
excitation parameters.

Conclusion

A Bayesian system identification approach was extended for
dating the PDF of the model parameters for nonlinear syst
using noisy response data only. The proposed spectral-base
proach relies on the robustness of the Gaussian approximatio
the FFT with respect to the probability distribution of the r
sponse signal in order to calculate the updated probability den
function for the parameters of a nonlinear model conditional
the measured response. It does not require huge amounts o
namic data, which is in contrast to most other published sys
identification methods for nonlinear models and unknown inp
The approach provides not only the optimal estimates of the
rameters but also the relative plausibilities of all values of
Table 5. Identification Results for Four-Story Inelastic Shear Building with Nonwhite Excitation~Example 4!

Parameter Actualã Optimal â Standard deviations
COV a5

s

ã
b5

uã2âu
s

u1 1.0000 1.0029 0.0142 0.014 0.20

u2 1.0000 0.9792 0.0170 0.017 1.22
u3 1.0000 0.9962 0.0210 0.021 0.18
u4 1.0000 1.0469 0.0241 0.024 1.95
uy 1.0000 0.9547 0.0303 0.030 1.51
Sf o 0.0060 0.0074 0.0008 0.133 1.75
sh1 0.0027 0.0032 0.0003 0.111 1.67
sh2 0.0081 0.0077 0.0005 0.062 0.80
vg 15.708 15.910 0.1123 0.007 1.80
zg 0.5000 0.5737 0.0296 0.059 2.49
Table 4 shows the identification results utilizing the spect
estimates up tovK516.0 Hz (K580). Again, a noninformative
prior distribution for the model parameters is used. The sec
column in Table 4 corresponds to the actual values used for g
eration of the simulated measurement data; the third and fo
columns correspond to the identified optimal parameters and
corresponding standard deviations, respectively; the fifth colu
lists the coefficient of variation for each parameter; and the
column shows the normalized errorb, which is the difference
between the actual and optimal parameters normalized by
calculated standard deviation. The first group of rows in the ta
corresponds to the stiffness parametersu j , j 51, . . . ,4,followed
by the yielding parameteruy , the forcing spectral intensitySf 0

and the standard deviations of the prediction error,sh j , j 51,2,
for the noise in the measured floor displacements,x1 andx4 . As
shown by the small COVs, all the parameter values are pin
down rather precisely by the data. Also, the normalized errorb
are the order of 2 or less, suggesting that the procedure is
producing biased estimates.

Fig. 15 compares, forx1 andx4 , the average autospectral e
timates and the amplitude of the average cross-spectral estim
in Ŝy,N

M ~zigzag curves! that are calculated from theM55 equal-
length time segments of data, with the corresponding expec
values inE@Sy,Nuâ# ~smooth curves! for the optimal parameter
JOURNAL OF ENGINEERING MECHANICS / JANUARY 2003 / 19
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parameters based on the data. This probabilistic description
very important and can avoid misleading results, especially
unidentifiable cases. For the examples presented, the upda
PDFs for the model parameters are well approximated by a m
tivariate Gaussian distribution and so the precision with which t
parameters are specified by the system response data are re
calculated.
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