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Introduction such as white noise. Usually a linear structural model is then
employed to estimate the parameters of the contributing modes of

The problem of system identification of structural or mechanical Vibration.
systems using dynamic data has received much attention over the System identification using linear models is appropriate for the
years because of its importance in response prediction, controlsmall-amplitude ambient vibrations of a structure that are con-
and health monitoring(Natke and Yao 1988; Housner etal. tinuously occurring. There is, however, a number of cases in re-
1997). However, the results of system identification studies are cent years where the strong-motion response of a structure has
usually restricted to the “optimal” estimates of the model param- been recorded but not the corresponding seismic excitation. In
eters, whereas there is additional information related to the uncer-some cases, this is because of inadequate instrumentation of the
tainty associated with these estimates which is very important. structure and, in other cases, it is because the free-field or base
For example, how precisely are the values of the individual pa- sensors malfunctioned during the earthquake. For example, the
rameters pinned down by the measurements made on the systemgeismic response was recorded in several steel-frame buildings in
Probability distributions may be used to describe this uncertainty Los Angeles which were damaged by the 1994 Northridge earth-
quantitatively and so avoid misleading resuBeck 1990; Beck quake, but an analysis of these important records has been ham-
and Katafygiotis 1998 Also, if the identification results are used pered by the fact that the inp(thase motionswere not recorded
for damage detection, this probability distribution for the identi- and also because of the strong nonlinear response.
fied model parameters may be used to compute the probability of A literature search reveals relatively few papers that deal with
damageVanik et al. 2000. system identification using nonlinear models and measurements
An important special case of system identification is where the of only the system respongéloshiya and Saito 1984; Loh and
input is unknown so only response measurements are available. InTsaur 1988; Roberts et al. 1995; Zeldin and Spanos J198&his
particular, this is the case in ambient vibrations surveys where thepaper, this subject is tackled using a stochastic model for the
naturally occurring vibrations of a structufgue to wind, traffic, uncertain input and a Bayesian probabilistic approach to quantify
microtremors and structural operationare measuredGersch the uncertainties in the model parameters. This Bayesian proba-
et al. 1976; Beck et al. 1994The uncertain input excitation is bilistic system identification framework was first presented for the
usually modeled as a broadband stationary stochastic processase of measured inp(Beck 1990; Beck and Katafygiotis 1998;
Katafygiotis et al. 1998; Yuen and Katafygiotis 20G#hd it has
IphD Candidate, Division of Engineering and Applied Sciences, Cali- been recently extended to the case of unknown input and linear
fornia Institute of Technology, Pasadena, CA 91125. structural models(Yuen 1999; Yuen and Katafygiotis 2001;
2Professor, Division of Engineering and Applied Science, California Katafygiotis and Yuen 2001; Yuen et al. 200Zhe proposed ap-
Institute  of  Technology,  Pasadena, = CA91125.  E-mail: proach is spectral-based and utilizes important statistical proper-
jimbeck@caltech.edu ties of the fast Fourier transforgFFT) and their robustness with
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May 20, 2002. This paper is part of tdeurnal of Engineering Mechan- for the parameters of a nonline.ar modgl conditional on the.mea-
ics, Vol. 129, No. 1, January 1, 2003. ©ASCE, ISSN 0733-9399/2003/1- sured response. The formulation is first presented for single-
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of-freedom(MDDF) systems. Examples using simulated data for
a Duffing oscillator, an elastoplastic system, and a four-story in-
elastic structure are presented to illustrate the proposed approac

Single-Degree-of-Freedom Systems

Bayesian System Identification Formulation

h

Bayesian Spectral Density Approach

Consider the stationary stochastic procgég and the discrete

estimator of its power spectral densBy(w):
N—1

— At .
Syn(wy) = 5aN Eo exp —iwgnAt)y(n)

n=

2

Q)

where w,=kAw, k=0,...N;—1 with N;=INT(N/2), Aw

Consider a structural or mechanical system whose displacement_, /1 andT=NAt. Here. INT denotes integer part. It can be

response is modeled using a SDOF oscillator with equation of
motion:

mx+ f5(X,X;05) = f(t)

1)

wherem, 05 and f(X,x;0;) are the masgassumed known the
model parameters, and the nonlinear restoring force of the oscil-
lator, respectively. Furthermore, the uncertain system input is
modeled as a zero-mean stationary Gaussian random prbcess
with power spectral density functio® (w;0¢), wheref; denotes

the parameters of the stochastic process model for the excitation

f(t). The observed system resporysis assumed to be stationary
and is modeled by

y(t)=x(t) +m(t) ()

where the prediction erraj accounts for modeling erro(sliffer-
ences between the system behavior and the madewell as

measurement noise. The uncertain prediction error is modeled as

independent zero-mean Gaussian white noise, so

Sy(@)=S(w)+ S0 3

whereS,, S;, andS,, are the power spectral densities for the

shown that the estimato®, n(w,) is asymptotically unbiased,
that is,

lim E[S, n(wi)]=S,(wy)

N— o0

(6)

where E[.] denotes expectatiofiyaglom 1987. However, for
finite N, this estimator is biased. Calculating the expectation of
the estimator in Eq(5) yields

N-1

t
B[Sy n(00]= 57 2 ¥aRU(NADCOSNO A +Syo. (7)

whereR,=the autocorrelation function of the respond¢) and
vn is given by

Yo=N, n=0

Yn=2(N—-n), n=1 (8)
Note that the right-hand side of E¢{) can be calculated using
the FFT of the sequencg,R,(nAt), n=0,1,... N—1.

Based on the assumed stationarityydt) and a type of the
central limit theorem, the real and imaginary part of the FFT at

system response, model response and the prediction error. The,n,0r4 frequencies are Gaussian distributed with zero mean as

spectral density functio8, , or the corresponding autocorrelation
function R,, can be approximated by equivalent linearization
methods(Roberts and Spanos 1990; Lutes and Sarkani 1687
by simulations.

Let Yn=[9(0),9(1),... 7(N—1)]" denote a vector consisting
of observed response data sampled at a time Atgpwhere
y(n)=y(nAt), n=0, ... N—1. Herein, we are concerned with
updating the uncertainty regarding the values of the model param-

eters a=[0] ,0{ ,0,0]" by using the data¥y where o2,

=2mS,o/At. From Bayes’ theorem, the updatgubsterioj PDF
of the model parametegs given the dataY is

p(alYn)=cip(a)p(Yy|a) (4)
wherec,;=a normalizing constant ang(a)=the prior PDF de-
scribing our initial belief about the uncertain parameter values.
Note thatp(a|\?N) can be used to give the relative plausibility
between two values of a based on measured Watahich does
not depend on the normalizing constant Also, the most prob-
able value ofa, denoted bya (the optimal parameter valugss
given by maximizingp(a)p(\?N|a). For largeN, the likelihood
p(\?N|a) is the dominant factor on the right-hand side of E4).
and saa is insensitive to the choice of the prior PPFa) as long
as the class of models is “globally identifiable” based on the data
Y\ (Beck and Katafygiotis 1998In this case, a locally noninfor-
mative prior(Box and Tiao 197Bcan be chosen; in effegp(a)
may be absorbed into the normalizing constantn Eq. (4).

A difficulty with implementing this approach is establishing
the joint distributionp(\?N|a) for the response of the nonlinear

N—coo (Brillinger 1969; Yajima 1989; Yuen et al. 200ZThere-
fore, the estimato§, \(wy), k=1, ... N;—1, has the following
asymptotic behavior:

1
lim Sy,N(wk)ZESy(‘”k)XZ 9)

N—o
wherey,=a random variable having chi-square distribution with
two degrees of freedorfi.e., exponential distribution(Yaglom
1987. Therefore, the PDF of the random variab¥(w)
= lim S, n(w) is asymptotically given by

N— oo
Y(w|a) 1 F{ Y(o)
a)==—exg—
PY(RIa)= 5 (o) ™ S ey

whereS,(w,) depends on the model parameter veetor

In the case of finite\, it can be shown using simulations that
for k<N,, the PDF ofS, \(wy) can be accurately approximated
by an exponential distribution in analogy to EG0) except that
the meanS,(wy) is replaced byE[S, y(wy)] given by Eq.(7).
Note that this approximation is very accurate regardless of the
true probability distribution ofy(nAt), n=1,... N (Yajima
1989; Yuen et al. 2002 This is due to the robustness of the
Gaussian approximation of the probability distribution of the FFT
with respect to the probability distribution of the stationary re-
sponse signal.

Furthermore, the random variable \(w,) and S, y(wy)
with k#¢ andk, {<N;, are uncorrelated asymptotically &k
—o (Yuen et al. 2002 Note that uncorrelated exponential ran-
dom variables are independeivaglom 1987. For largeN, this

(10)

system. Note that the response is not Gaussian distributed but theproperty is approximately correct in a certain frequency range. In

FFT of the response it least approximately We utilize this
property to obtain a response PDF in the next section.
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particular, for a sufficiently small numbé¢<N;, one can as-
sume that the random vectSf’Nz[Sy'N(ml),...,Sy'N(mK)]T has



all its elements approximately independently exponentially dis- response(n), e. g., model displacement or model acceleration,
tributed. Therefore, its joint PDF can be approximated as follows: calculated at the observed DOFs from Ef). This difference
between the measured and model response, called prediction

K
Sy n(@y) ) i i ; i i
a)= exd — ' 11 error, is modeled as a discrete zero-mean Gaussian white noise
Syl k[[l ELS) n(w1)] E[Syn(wi)] (1) vector process)(n) e RNo so

where E[ S, y(wy)] is given by Eq.(7) and it depends on the y(n)=q(n)+m(n) (16)
model parameter vect@. In practice,wy can be chosen in the

rangel 1.50,2.0w,] wherew, is the frequency at which the peak  where the discrete procesggsis independent off and satisfies
of the spectral estimatéﬁ,N(wk) occurs. A more detailed discus- T _

sion will be given in the' numerical examples. E[n(mn'(p)]=T3,p

Given the observed da4 , one may substitute it into E¢5) whereE[.]= expectation,,=the Kronecker delta function, and
to calculate the corresponding observed spectral estifife ~ I'y=the N,X N, covariance matrix of the prediction—error pro-
=[S, n(®1),...,S,n(0k)]". Using Bayes’ theorem, the updated C€SSM:

. 2K Let a denote the parameter vector for identification; it includes
PDF of the model p.arameteasglven the date  follows from the following parameterg1) the structural parametets; (2) the
an analogy to Eq4):

excitation parameter®; ; and(3) the elements of the upper right

(17

p(a|§jN)zczp(a)p(é§<N|a). (12) triangular part of’, (symmetry defines the lower triangular part
' ' R of this matri¥. As in the SDOF case, we apply Bayes’ theorem to
wherec,=a normalizing constant, and the likelihop@S{ \|a) is update the uncertainty regarding the values of the model param-
given by Eq.(11) where eaclB, (o) is replaced b)éy’N(mk), etersa based on the spectral density estimates.

and E[S, y(w|a)] is calculated from Eq(7) where R,(nAt)

=R,(nAt|a) may be calculated by equivalent linearization meth- . . . .

ods or by simulation. The optimal parametérare obtained by ~ SPectral Density Estimator and its Statistical

minimizing the objective functionJ(a)= —In[p(a)p(Qj'N|a)]. Properties

For the results in this paper, this optimization is done using & consider the stationary stochastic vector progégsand a finite

MATLAB function “fmins” (MATLAB 1994 _ ~ number of discrete dat¥y={y(n),n=0,... N—1}. Based on
In the case where several independent time histories Yy, we introduce the following discrete estimator of thg

YO,..., Y are available, the estimation can proceed by calcu- x N, spectral density matrix of the stochastic procgs:

lating the corresponding estimat&§",... (") and then cal- _

culating the updated PDF Y ' Sy n(@K)=Vn(w) V(0 (18)

. . M . where z=the complex conjugate of a complex varialdeand
p(al§...., ,’&M))=Csp(a)ﬂ p(SMla  (13) Yn(w) =the (scaled discrete Fourier Transform of the vector
et processy at frequencyw,, as follows:
wherep(§\"|a) is given by Eq.(11).

Note that in the proposed approach, each set of data can cor-
respond to a different time duratidnand different sampling time
interval At and Eq.(13) automatically takes care of the weighting
for different sets of data. where o, =kAw, k=0,...N;—1 with N;=INT(N/2), Aw

=2m/T, andT=NAt. Note thatS y(w,) contains estimates of
the autospectral densities in its diagonal elements and estimates of
Multiple-Degree-of-Freedom Systems the cross-spectral densities in its off-diagonal elements. Note also
that Eq.(5) is a special case of Eq&L8) and(19).
Using Eqs(16) and taking expectation of E¢L8) (noting that

t N-1 -
I =\ 5oy 2 Y(Wexa—ionAt  (19)

Model Formulation g andm are independehtyields

Consider a system witiN, degrees of freedoniDOFg whose B

displacement responsét) e RNd¢ is modeled using the equation B[S, n(wila]=E[Syn(wlal+E[Syn(wwla]  (20)

of motion: whereS, \(wy) andS, y(wy) are defined in a manner similar to
MX +f(X,X; 05) = TF(1) (14) that described by Eq$18) and(19). It easily follows from Egs.

] (17) and(18) that
whereM e RNa*Na=the (known) mass matrixfse RNd=the non-

linear restoring force characterized by the structural parameters A

0,, TeRNe*Ni=3a force distribution matrix, and(t) e RNr=an E[S, n(wW]al= 5T, =S (21)
external excitatiorte.g., force or ground acceleratjomodeled by

a stationary Gaussian process with zero mean and spectral density The termE[ S, y(w)|a] in Eq. (20) can also be evaluated by

matrix function characterized by the excitation parameters noting thatS, y(w,) has elements:
St(w)=St(w;05) (15) " At N
_ , j.0 = _ —iwg(n—p)At
Assume now that discrete response data are available for Sg,N (@k) szn")E:O qj(n)qe(p)e =P (22)

No(=N,) observed DOFs. Lekt denote the sampling time step.
Because of measurement noise and modeling errors, the measure@rouping together terms having the same valuepof () in Eq.
responsey(n) e RNo (at timet=nAt) will differ from the model (22), and taking expectation, we obtain the following expression:
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Ap N2
E[S{y/(0i)|a]= N 20 Ya[RYV(nAt[a)e oAt
=

)

+RUO(—nAt|a)elonat] (23) % I/'I"’/‘?" S

s3 ll' “"H e
wherey, is given by Eq.(8) and RJ-“/=the cross-correlation W’j‘ ["l,l[l?(:';" ’l[;;l;l;";’l;'ll "Iqqll,,,ll,
functions between thigh and¢th component of the model quan- - ” IWII‘I'I” ”“!lll ![IIII'IIIIM I
tity g. However, it is usually not possible to obtain the correlation %% I,"I,, ,!W ‘;,’f;"l{,’ll}’[/’[ﬁ)/!!I}’l]l['ﬂ[l['[")'ll'l]l[l [l \\\
functions theoretically. In this case, for givanwe can simulate % "l"""';f'llf'l,/l,?l,'li,lli,’l"I'I' 1 H Wil
samples of the response using E(e}) and (15 and hence cal- & """'""'f"'lumm/;’l;’l\\
culate their spectral density estimates in a similar manner to that & """"I'I'“I ! \\

'

described in Eq918) and(19). Then, rather than using Eq3),
the expected values of the spectral estimates can be approximatec
by the average of the spectral density estimators obtained from
the samples. ks
Next, we discuss the statistical properties of the estimator
S, n(wy). Denote byYy r(wy) andYy (o) the real and imagi-
nary part, respectively, oMy(wy), that is, Yy(wy) =Yy r(®k)
+iYn(wy). SinceY(wy)y is zero-mean and asymptotically a
Gaussian vector fok=1,... N;—1 (Brillinger 1969; Yajima
1989; Yuen et al. 2002 both Yy r(w) and Yy ,(w,) are also

05" as K

Fig. 1. Conditional updated probability density function
p(ky ksl S TS 5(D) (Example 3

zero-mean Gaussian vectorsMs-«. Furthermore, in the limit ~ —1 is not Gaussian. Again, this is due to the robustness of the
when N—, the covariance matrix of the vector Gaussian approximation of the FFT irrespective of the probability
[ VN r(01), PN, (0)]" has the form(Yuen 1999: distribution of the stationary response signal.
Cui(®)  Crag) Also, note that in the special case of a SDOF oscillator or in
Cn(op) = (24) the case of a MDOF system with only one set of data at one
—Cralww)  Cnalwk) measured DOFNI=1 andN,=1), the distribution in Eq(26)
Eq. (24) states that the real and imaginary part)§(w,) have becomes an exponential distribution and so reduces tq1B¥.
equal covariance matric& ,(w) fork=1,... N;—1, i.e., ex- Furthermore, whe —, the vector§ Y\ g(wi), Yy (wi)]"

cluding the zero and Nyquist frequencies. Also, it states that the and[ V] r(® ),V (w,)]17 with 0, # o, are independertyuen
cross covariance between the real and |mag|nary part has theet al. 2002 This causes the complex vectoB¥y(w,) and
property CN 2(wk) —Cuswd), ie., E[MDa(00I0(0d] Yi(w) to be independentasN—). As a resul, the matrices
:—E[y( (wk)y( (0)]. The latter property |mpI|es also Sy,N(wk) ar}dSS,,N(w() are independently Wishart distributed for
that the diagonal elements oy, are equal to zero, ie, K#¢, thatis,

E[L (0 W (@) 1=0, for everyj and o,. Because of Eq. PLS) N (01, S\ (0 ) ]=p[S\ (0 IP[F(@)]  (27)

(24), the complex vectoy(w,) is said to have a complex mul- ) ) )

tivariate normal distributiorfKrishnaiah 197pasN— <. where the two right-hand side factors are given by &§). Al-
Assume now that there is a set of independent, identically though Eqs(26) and (27) are correct only asymptotically d$

distributed, time histories ... Y™ As N—c, the corre- —oo, it was shown by simulations that these are indeed very

accurate approximations in a certain bandwidth of frequencies for

sponding Fourier transfor ) n=1,... M, are inde- R .
P 9 mv(,\, (@), the case wherdl is finite (Yuen 1999. In the case of displace-

pendent and follow an identical complék- vanate normal dis-
tribution with zero mean fok=1, ... N;—1. Then, ifM=N,,
the average spectral density estiméta N, X N, Hermitian ma-
trix):

M M
1 1 _
o =17 2 Sh@0= g7 2 W@ A (w0
(25)
follows a central complex Wishart distribution of dimensiNg
with M DOF and mean E[S]\(w)]=E[S, n(wy)]

=2[Cy(wy) —iCy 2(wy)] as N—oo (Krishnaiah 1976 The
PDF of this distribution is given by

| N (@) M~ Ne
p(SyN(‘Dk)) CAEE;M\A 11

. i
; ,,,,,,, - "
‘ o.o’o’;"";““ii?.a666;; vvvvv
‘ 4 0 "
. “"’."0:0:0:0.0’0'0‘0’.‘:“'00'.‘.‘,‘.’.0o'o’o’.‘.‘.m’o’o’o
B “,.,...,.,o,o“.o‘m.go‘om mm.o.:,,o,o‘ i .o.o’.’. i
“‘m"“‘“"o‘o’." m": .‘:':':'I'l'l i 0
m‘o‘o‘:,'o,",’l't, Hc"’
A
: IR
:5»::,':,’: )
o

4.5

p(kl? k3|S;(,}\(/'n)7 A g}z)v 5"(72))

0
i
Wy of:"

X exp(—Mtr{E[S, n(wi)] 1S\ (w)})

k ;

(26) : 06 35 kl

wherec,=a normalizing constant and\| andtr[A] are the de-

terminant and the trace, respectively, of a mafixNote that this
approximation is very accurate even y{nAt), n=0,... N

Fig. 2. Conditional updated probability density function
p(Ky kgl SV &S, 5(0), n=1,2 (Example 1

12 / JOURNAL OF ENGINEERING MECHANICS / JANUARY 2003



Table 1. Comparison of Actual Parameters Versus Optimal Estimates and Their Statistics for Duffing Os(iatmple 1

q
&
o

Parameter Actud Optimal & Standard deviatioo COV a=x b=

c 0.1000 0.1021 0.0108 0.108 0.20
Ky 4.0000 3.9420 0.0463 0.012 1.25
Ks 1.0000 0.9868 0.1295 0.130 0.10
S 0.0100 0.0098 0.0005 0.046 0.41
s2) 0.0400 0.0454 0.0020 0.051 2.64
ol 0.0526 0.0514 0.0022 0.042 0.55
ol 0.1092 0.1025 0.0045 0.041 1.49

ments(or accelerations such range of frequencies corresponds to on prior information and engineering judgment. The likelihood

the lower- (or higher) frequency rangeoye[wy,0k] (Or factor p(S)'i|a) expresses the contribution of the observed data.

[ok @y, -1])- Based on Eqs(26) and (27), this factor can be calculated as
follows:

Identification Based on Spectral Density Estimates K | Q’AN( )M~ No

Based on the aforementioned discussion regarding the statistical p(Sy 2= CGH 1 |E[Sy n(wi)|a]|™

properties of the average spectral estimﬂm(mk), a Bayesian

approach for updating the PDF of the uncertain parameter vector Xexp(—M tr{E[Sy,N(wk)|a]7léyN(wk)})
a is proposed as follows: Givell =N, (whereNy=the number

of observed DOF independent sets of observed datd’, (29)
=1,... M, one may calculate the corresponding observed spec-where E[S, n(w))|a] is given by Egs.(20) and (21) with

tral estimate matrice§",, n=1,... M using Egs.(18) and E[Sy.n(wi)|a] estimated by simulation as explained earlier. It is
(19). Next, one can calculate the average matrix estlmatessuggested to choosek such that the frequency range just in-
S(’y,N)(mk) using Eg. (25 and then form the setS ‘N cludgs aII.of the. peal§s of thg spgctral de.nsr[y estimates. A more
={§§/fN(kAm), k=1,... K}, whereK is an integer sufficiently detailed discussion will be given in the thlr_d example_. o
smaller tharN; =INT(N/2). Using Bayes’ theorem, the updated 1€ MOst probable parametesare obtained by minimizing
PDF of the model parametess given the dateS)'\{‘, is then the objective function)(a)=—In[p(a) p(Sy'i|a)]. Furthermore,

for large amounts of datdarge productKNyM), the updated

K K PDF p(a|§§\,’fNK) can be approximated by a Gaussian distribution
p(al Sy ) =Csp(a)p(Syy @) (28) centered at the optimal poitif it is globally identifiable (Beck

where cs=a normalizing constant such that the integral of the 2nd Katafygiotis 1998 The corresponding covariance matki

right-hand side of Eq(28) over the domain of is equal to one. is equal to tthir:(verse of the Hessiarl m_atrix of the Afu_nlction
The factorp(a) in the Eq.(28) represents the prior PDF, which  J(&8)=—In[p(alSjiy’)] calculated ata=4a, i.e., T,=H(d)
expresses the relative plausibilities of different values of a basedwhere Hj((a)=82J(a)/aajaa€|a:é. In the results presented in

given by

20 T T T 1.25 : T T T T
: : : (s} Optimal
151 b 12F ORI TR L x Actual | |
- - . [ I 1SD
2SDs
S 10} R

wo
®
&
w
©
w
©
&
IS
IS

.05

10

PDF

4.1
1.15

Fig. 3. Conditional probability density function df; andk; calcu- Fig. 4. Contours in the K; ,k3) plane of conditional updated prob-
lated using(1) Eq. (13—crosses; an(2) Gaussian approximation— ability density functiorp(k, ,ks| S, S92 .¢,5(0 .52 .60 ,62)

solid. The remaining parameters are fixed at their optimal values.  (Example J.
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Fig. 5. Relationship between restoring force and displacement of
system(Example 2.

this paper, this Hessian matrix is calculated using a finite differ-
ence method. This Gaussian approximation provides a very effi-
cient way for the quantification of the uncertainty for the model

parameters without evaluating high-dimensional integrals. How-
ever, it is not always a very accurate approximation, e.g., in uni-

dentifiable cases. One check is to assume that the Gaussian apant term, that is, E[x(t_T)XS(t)]mg(;in(T), where o

proximation is accurate and calculate some lower-dimensional
conditional PDFs and compare them with the values calculated
from Eg.(28). If they match well, then the approximation can be
used. If they do not match, simulation methods may be (sed,
Beck and Au 200Rto calculate the associated uncertainties for
the parameters.

Numerical Examples

Example 1: Duffing Oscillator

In this example, we consider a SDOF Duffing oscillator of known

massm subjected to zero-mean stationary Gaussian white noise

f(t) with spectral intensitys;,:

mX(t) + cX(t) + kyx(t) + kgx3(t) =f(t) (30)

20 T T T T T

-5}

Fig. 6. Hysteresis loops of simulated dataxample 2

where R (71)=E[x(t—7)x(t)], VteR. The term E[x(t

—1)x3(t)] can be approximated by neglecting the fourth cumu-
2
X

=R,(0) is the variance of the respondaites and Sarkani 199.7
Therefore, a differential equation for an approximation of the re-
sponse autocorrelation function can be readily obtained:

mR,(7)+cR(7)+ (ky+ 302ks)R (1) =0 (32)
with R,(0)=02 and R[(0)=0. Eq.(32) is a second-order ordi-

nary differentigl equation with constant coefficients, which can be
solved analytically. ThenE[S, y(wy)|a] can be obtained for a
given parameter vecta by using Eq.(7). Finally, the updated
PDFp(alS{") is readily obtained using Eqé5), (11), and(12),
where we takg(a) as constant over the region wheﬂé{f;h(,lﬂa)
is large, i.e., a locally noninformative prior POBox and Tiao
973.

F?g. 1 shows the conditional posterior PDF
p(Ky kgl S TSP 54Y) normalized in such a way that the
peak value is unity, which is obtained by utilizing only the spec-

To simulate noisy data, the stationary displacement responsetral estimates up to frequenay,=1.0 Hz (K=1,000). Note that

history Y{’ was generated with parameters#
=[Tk; ks, {0,507 where m=1kg, T=0.1kagls, k

=4.0N/m, k3=1.0 N/n?, S{)=0.01N's and!)=0.0526 m
(20% noise. The sampling interval idt=0.1s, with total time
T=1,000s, sdN=10,000.

Multiplying Eqg. (30) with x(t—1) and taking expectation
yields

MR!(1)+cR.(1) +K;Ry(7) + KsE[x(t—7)x3(1)]=0 (31)

the small-amplitude natural frequency of the oscillator is
1/m Hz~0.32 Hz. It is obvious that this case is unidentifiable,
i.e., given one set of dynamic data, the estimate&,oénd k;
suffer from large uncertainty as there are infinitely many combi-
nations ofk, andks; which give similar values for the posterior
PDF.

Another time history data sét(Nz) was generated for the same
oscillator (same®, k;, andks) but with $2=0.04 Ns and
§%)=0.1092 m(20% nois¢. This case is, again, unidentifiable.

Table 2. Identification Results for Elastoplastic System with Theoretical Spectrum Estimated by Equivalent Linea(&zsiople 2

o [a-a]
Parameter Actud Optimal & Standard deviationr COV a= 3 B= o
kq 16.000 15.827 0.1162 0.007 1.49
Xy 1.0000 1.3493 0.4818 0.482 0.72
Oy 0.6029 0.5762 0.1437 0.238 0.19
g 0.1206 0.1376 0.0209 0.173 0.82

Mno
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Fig. 7. Contours of conditional updated probability density function  rjq 9. contours of conditional updated probability density function

p(kl_'xij,N_"A’x’fA’nO_) with the theoretical spectrum estimated by P(Xy .0 SN k1,6 ,0) With the theoretical spectrum estimated by
equivalent linearizatioiExample 2 equivalent linearizatiotExample 2

However, if we plot these two posterior PDFs togetfstrown in

Fig. 2), the peak trajectories in thé{,ks) plane have different . . B )

slopes. By Eq(32), the equivalent linear system has a stiffness value of the difference between the identified optimal value and
ki+302ks. Therefore, the autocorrelation coefficients depend on €xact value, normalized with respect to the corresponding calcu-
Oy and, hence’ the |eve| Of excitati@o, Shown‘]g that d|ﬁerent Iated Standard dEVIa'[IOI‘l The COVS in Table 1 are a" CIUIte Sma”,
levels of excitation lead to different slopes of the peak trajectories Showing that the parameter values are pinned down rather pre-
in the (k;,ks) plane. Since the coefficienvd is always positive, cisely by the data. The normallzed err@ysn Table 1 are of the .
the slope of the peak trajectories in the (ks) plane is always order of 2 or less, suggesting that the procedure is not producing

negative. This is expected because a larger valug efn com- “biased” estimates, that is, the errors are not unusually large,
pensate for a smaller value kf, and vice versa. compared to the calculated standard deviations.

Fig. 2 suggests that if we use the two dynamic data ¥&ts Fig. 3 ~shows ~the condiional updated = PDFs

oK, (1) &K, (2) A1 &(1) &(2) ~(1) ~(2 oK, (1
and Y(?) together, uncertainty itk; andk, can be significantly ‘3(";@,@)@1@ )lcz’k?;’?go)jsjo)’0510)"_7510)) and p(ks| SV,
reduced. Table 1 shows the estimated optimal valdes ek S S .65 ’O-S.’]O))’ obtained from: (1) Eq. (13
=[6,R1,R3,AS%),§%) ,&%13,65]20)? and the calculated standard de- (crossesand (2) the Gausglan appr_oxmaﬂdsqhd I_|ne)._ It can
Viations o . o . o oD, o« . ando. @ obtained be seen that the asymptoth Gau35|.an appro.><|mat|c_m is very accu-
er Ty Tkyr TSigh TS Do “no rate because 2,000 data points are involved in the likelihood func-
using both data seté’ andY{?). It also gives the coefficient of  tion given by Eq.(13). This property provides a very efficient
variation (COV) for the parameter estimates and a “normalized way for the quantification of the uncertainty for the model param-
error” . This normalized error parameter represents the absoluteeters, especially since the evaluation of high-dimensional inte-
grals is not straightforward.
Fig. 4 shows nearly elliptical contoursolid lineg in the
1 ' ' (ki,ks)  plane  of the conditional updated PDF
wl ] p(ky kel SO, §5?,8,5) .52 ,6'1 ,6(2) calculated using Eq.
(13) (keeping all the other parameters fixed at their optimal val-
W ] ues. These contours correspond to the parameter sets, which give
80, 60, 40, 20, 10, and 5% of the conditional PDF values at its
101 J peak. Furthermore, by using the Gaussian approximation, the one-
and two standard deviations contours can be calculated, which are
102L . shown by a dotted line and a dashed line, respectively, in Fig. 4.
‘ One can see that the orientation of the ellipses is the same for the
w0k | E two groups of contours, showing that the Gaussian approximation
is very accurate in this case. Note that the optimal parameter
107 i ‘ values fork; andk; seem to be more than two standard devia-
iy tions away from their actual values because Fig. 4 shows the
107 3 conditional PDF, not the marginal PDF. Table 1 shows that the
optimal estimates and actual valueskgfandk; are much closer
0 05 1 15 than two standard deviations.
f (Hz) The estimation of the model paramet@sis not sensitive to
the choice of the cutoff frequenayy as long as it is larger than
the frequency at which the peak of the response spectral density

Sy, N

10

Fig. 8. Power spectral estimates using measuremghtample 2
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Table 3. Identification Results for Elastoplastic System with Theoretical Spectrum Estimated by Simyiatample 2

q
I~
|
o

Parameter Actud@ Optimal & Standard deviatior COV a= 3 B= o

kq 16.000 15.984 0.0433 0.003 0.36
Xy 1.0000 1.0918 0.0732 0.073 1.25
Sto 0.1500 0.1376 0.0136 0.091 0.91
T o 0.1206 0.1359 0.0201 0.166 0.76

estimates occurs. Identification using the same sets of data wasiot perfectly stationaryLutes and Sarkani 199,7but we show
also carried out withwx=5.0 Hz (the Nyquist frequency, in this  that the proposed identification method still produces satisfactory

case. The results were virtually the same as those using results.

=1.0 Hz except that there were significant reductions in the un-  The equivalent linear system has the following equation of
certainty of the noise levels. That is, utilizing a largeg gives motion:

better estimates for the noise level only. Therefore, it is suggested mMX(t) + boX(t) + byx(t) =f(t) (34)

that one chooses any ranging from 1.50, to 2w, wherew, is

the frequency at which the peak of the spectral estin@@$mk)
occurs. It is computationally efficient to use such valuesoQf

whereb,; andb, are given by(lwan and Lutes 1968; Lutes and
Sarkani 199Y.

without sacrificing the quality of the identification for the model 8 (=1 x§ xiz2
parameterd; . by=ky) 1= ;L 2t ge2 VLN ~ 5 2] |02
X X
: i i [ m Kkix X

Example 2: Elastoplastic Oscillator b= 5 (l, y{l_ erf( y ” (35)
In this example, we consider an elastoplastic SDOF oscillator of 1P V20,
known massn subjected to zero-mean stationary Gaussian white Note that the calculation df; andb, requiress2, the variance of
noisef(t) with spectral intensitys: the response. Although, can be determined from the spectral

mX(t)+ fo(x(t) =f(t) (33) intensity of the excitatior®;,, it is computationally more efficient

) . to include o, directly instead ofS;, in the parameter vector.
wheref(x(t)) =the restoring force of the system. The restoring Therefore, the parameter vecm [k, ,x, 0, ,0.,,]" is identified

force—displacement relationship is shown i[1 Fig. 5. To simulate jstead ofa, in this case. ThenE[S, y(w)|a] can be obtained
noisy data, the displacement response histogywas generated  given parameter vectoa by using Eq.(7) where R (nAt) is
with parameters§0=[~kl,7<y ,sto,ano]T where m=1kg, k; Qpproximated by the autocorrelation funct!on for the equivalent
=16.0 N/mX,=1.0 m,S,,=0.15 N’ s ands, ,=0.1206 m(20% linear sys:tem given by Eq$34) and (35). Finally, the updated
noise. The sampling rate interval ist=0.05 s, with a total time ~ PDF p(alS; ) is readily obtained using Eqs5), (11), and(12).
T=200 s, that isN=4,000. The hysteresis loops of the simulated Note that a locally noninformative prior distribution is used, as in
data are shown in Fig. 6. Note that these hysteresis loops are noExample 1.

assumed to be measured; they are shown here only for illustrative ~Table 2 shows the estimated optimal valuea
purposes. Note also that in this case, the displacement response is[Rl,Ry,(}x,&no]T and the calculated standard deviatiam:i,

Optimal : : : : : e} Optimal
Actual : : : : x Actual
18D o 0T I . 18D 4
25Ds , , z : : -~ 28Ds
0t T TN L]

0.15F Y %- N o
h 1 : N
8 [ \
N \
P IR . i
i
4 " !
v i
A |
043F iy [ u
E N 7
N K
: N, 4 :
042 N : : e
: '~ L :
i ~. P
0l G T T e
0.9 L L L i I ; . : ; ; : :
15.85 15.9 15.95 16 16.05 16.1 16.15 09 0.95 1 1.05 11 1.15 1.2 125 13
k z
1 Y

Fig. 10. Contours of conditional updated probability density Fig.11. Contours of conditional updated probability density function

function p(kl,xy|§j,N,&x,&no) with theoretical spectrum estimated p(xy,Sfo|§j,N,R1,&no) with theoretical spectrum estimated using
by simulation(Example 2 simulation(Example 2
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Fig. 12. Four-story inelastic structurgExample 3

Txp Top andcr(rno obtained using the single data 3&§. Fig. 7
shows contours in thekg,x,) plane of the conditional updated

PDF p(kl,xy|§{,<,N ,0x,0.,0) calculated for one set of simulated
data from Eq(13) (keeping all the other parameters fixed at their
optimal values For these results, only the spectral estimates up
to frequencymy,=1.25Hz (K=250) were used. Note that the
small-amplitude frequency of the oscillator isi2Hz~0.63 Hz.
Again, wg can be chosen between 1¢§, and 2.0w,, as in
Example 1, where from Fig. 8, the spectral estimates peak, at
~0.65 Hz.

Fig. 9 shows a similar plot to Fig. 7 but in th&(,0,) plane.
It can be seen that the contours are very thin lying on the line
oy=0aX,tay, wherea;~0.28 anda,~0.2, showing that the

20

foa(t)/my

-5}

Al S
-0.02 -0.015

-20 1 s 2 .
-0.03 -0.025 -001  -0.005 Y 0.005 0.01 0.015 0.02

T4 (t) — T3 (t)

Fig. 14. Hysteresis loops for fourth storExample 3

parameters in thex( ,o,) plane lie far outside the two standard
deviations contour in Fig. 9. This is because Fig. 9 shows the
conditional PDF, not the marginal PDF.

Table 3 shows the identification results using the same set of
data with the theoretical spectrum estimated by simulation, rather
than by using Eqs(34) and (35). Note that in this case, the un-
certain parameter vectora§=[kl,xy,Sfo,(rno]T, i.e., itincludes
the spectral intensity of the excitation instead of the root-mean-
square(rms) of the response, because this is more efficient for the
simulation of the system response. Here, for given parameter val-
ues, 100 samples of spectral estimates are simulated using Equa-
tions (33), (2), and (5) and the theoretical spectrum is approxi-

estimates of these parameters are very correlated. This is becaus@ated by the average of them. One can see that it gives more

b, andb, in Eq. (34) depend omm, k;, andx, /a, only. The only
factor that makes, ando, identifiable comes from the amplitude
of the spectrum, which is proportional tef. This also explains
why the uncertainty forx, and o, is so large when utilizing
equivalent linearization. Note from Table 2 that the actual values
of the parameter¥, and o, are within one standard deviation
from their optimal values, andé, respectively, but the actual

0.1 T T T T

—— 27 fioor]
0.05F -
S
= ¢
=
-0.05F ~
o1 ; 10 : 2 2
t (sec)
0.2 T T T T
—— 5% floor
01
—
E o,
N
=
sl
03 ; I : 2 25
t (sec)

Fig. 13. Displacement measurements at second and fifth flés
ample 3

precise optimal parameter values than those in Table 2, especially
for x,, by comparing the respective COVs. This is because the
equivalent linear system can not completely capture the dynamics
of the nonlinear oscillator. Therefore, the results obtained by
using an equivalent linear system lose some information from the
data, suggesting that for the identification of highly nonlinear sys-
tems, the simulation approach is the preferred one. Although the
response of the system is slightly nonstationary, the proposed ap-
proach still gives good results.

Figs. 10 and 11 show contours of the conditional updated PDF
P(K1 Xy SN GG o) ANAP(Xy ,Stol S\ k1.6 0), respectively,
with all the other parameters fixed at their optimal values. It can
be seen that the optimal parameter set is within two standard
deviations away from the actual parameter set in both ithex()
and (x, ,Ss,) planes, whereas this was not the case in #jed,)
plane when the theoretical spectrum was estimated by equivalent
linearization(see Fig. 9.

Example 3: Four-Story Inelastic Structure, White-Noise
Excitation

The third example uses simulated response data for a four-story
inelastic shear building shown in Fig. 12. The nonlinear springs
have the same inelastic behavior as described in Fig. 5 in Ex-
ample 2. The structure has uniformly distributed floor mass
=160ton,j=1, ...,4, anduniformly distributed story stiffness
over its height. The linear stiffness to mass rathslmj, i
=1,...,4, arechosen to be 1,310 8 so that the small-amplitude
fundamental frequency is 2.00 Hz. Furthermore, the
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Table 4. Identification Results for Four-Story Inelastic Shear Building with White-Noise Excitdficmample 3

q
~
|
O

Parameter Actud Optimal & Standard deviatioo- COV a=x B=—5

01 1.0000 1.0122 0.0097 0.010 1.26
0, 1.0000 0.9907 0.0089 0.009 1.04
03 1.0000 0.9903 0.0103 0.010 0.95
04 1.0000 0.9947 0.0078 0.008 0.69
0y 1.0000 0.9577 0.0533 0.053 0.79
Sto 0.0060 0.0076 0.0008 0.132 2.03
Oq1 0.0022 0.0022 0.0001 0.047 0.03
T2 0.0063 0.0062 0.0002 0.040 0.41

yielding level is chosen to bg,=0.015 m for each story, which

ticular data channel is equal to 10% of the rms of the noise-free

corresponds to 0.5% drift if the story height is 3.0 m. For better response at the corresponding DOF.
scaling in the identification process, the stiffness and yielding  Fig. 13 shows the simulated noisy displacement time histories
parameters are parameterized ky:= BjRj ,i=1,...,4, andx, atx; andx4l, and Fig. 14'shows the hysteres@s loops for the fourth
=6,%,, wherek;=2.10x 1P kN/m and %,=0.015m are the tsr:ory, that is, the restoring ford;e_,4(t) normalized bym, versus
nominal values for the linear stiffness of thith story and the e interstory displacementy(t) —x5(t). Note that these hyster-
nominal yielding level for all four stories. The structure is as- ©SIS l00ps are not assumed to be measured; they are shown only
sumed to be subjected to a white-noise base accelerftioth for the purpose of illustrating the level of nonlinearity. Note also
spectral intensityS;,=0.006 nfs 3. Note that the matrixT in that the nonlinearity in the other stories is even higher. The time
Eq. (14) is equal to the &1 matrix —[my,m,,ms,m,]" in this histories were separated into five segmeris=5) with equal
case. Therefore, the model parameter vector for identification isength in order to average five sets of spectral estimates. Recall
a=[01,0,,03,0,,0,,S0,0,1,0,2]" that the expected value of the spectral density matrix estimator,
To simulate noisy data, displacements at the second and fifthE[ S, n|a], is obtained by the following procedure. First, simulate
floors, i.e., atx; andx,, were generated over a time interval 100 system responses for the model parametethen, by using
=25 s, using the exact parameter val@esA sampling interval Egs.(18) and(19), 100 samples of the spectral estimates can be
At=0.01 s was used, so the total number of measured time pointsobtained. By averaging these 100 samples for each discrete fre-
is N=2,500. The noise added to the simulated response had agquency, one obtains an estimate of the expected spectrum
noise-to-signal ratio of 10%, i.e., the rms of the noise for a par- E[S, y|a].

> 2" floor - 5% floor _,  cross spectral density
10 : . 10 ; . 10 : :
107 { 107 { 107 4
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vl v o
107 { 107 7 107¢ 3
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Fig. 15. Autospectral and cross-spectral estimdtagzag and their expected valuésmooth) (Example 3
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1015 " ! ! T i j T — estimates. One can see that the identified expected spectral den-
: Z ; v : o Qutimal sities fit all the peaks of the corresponding spectral densities es-
i Bate e : — ;g D timated from the measurements for both floors.
1005k I,’ O *\\\ . : S~ Fig. 16 shows the contours in thé,(,6,) plane of the condi-
. ; : : ﬁ S tional updated PDF 06, and 6, (keeping all other parameters
IR o AR B O B fixed at their optimal valugsOne observes that the actual param-
‘ - , ; R eters are at a reasonable distance, measured in terms of the esti-
& \ \ mated standard deviations, from the identified optimal param-
090k - ,‘-,\, - .-‘.‘ eters.
E\_ . “,
0085E e L ' '
N _ O Example 4: Four-Story Inelastic Structure, Nonwhite
008} : :\»\\. T Lo J Excitation
O PYP PO 0 WA SIS SRS S B In this example, the same structure as in Example 3 is subjected
P - to nonwhite excitation given by filtered white noise with the
R ra—ry 1 005 Tor  Tos  Toz 1o 10 1oss Kanai—Tajimi spectruniClough and Penzien 19¥5
[/
' 4@5(»5&)24— wg
Fig. 16. Contours of conditional updated probability density ngxg Sfo(wz_w2)2+4§2m2w2 (
function in (6;,0,) plane, keeping all other parameters at their g g9
optimal valuegExample 3 where the filter parameters are chosenogs=5w rad/sec and

{4=0.5. Identification is repeated under the same conditions as
the previous case, except that the white-noise excitation is filtered
Table 4 shows the identification results utilizing the spectral by the Kanai—Tajimi filter before applying it to the structure. Note

estimates up ta,=16.0 Hz K=280). Again, a noninformative  that the parameter vector a now also includgsand{, in addi-

prior distribution for the model parameters is used. The secondtion to the eight parameters in Example 3.

column in Table 4 corresponds to the actual values used for gen- Table 5 shows the identification results utilizing the spectral
eration of the simulated measurement data; the third and fourthestimates up tm,=16.0 Hz K=80). Again, a noninformative
columns correspond to the identified optimal parameters and theprior distribution for the model parameters is used. The proposed
corresponding standard deviations, respectively; the fifth column method can successfully identify the structural parameters and the
lists the coefficient of variation for each parameter; and the last excitation parameters.

column shows the normalized err@; which is the difference

between the actual and optimal parameters normalized by the

calculated standard deviation. The first group of rows in the table Conclusion

corresponds to the stiffness parametgrsj=1, ... ,4,followed

by the yielding parametes, , the forcing spectral intensitg, A Bayesian system identification approach was extended for up-
and the standard deviations of the prediction ereqy,, j=1,2, dating the PDF of the model parameters for nonlinear systems
for the noise in the measured floor displacemexisandx,. As using noisy response data only. The proposed spectral-based ap-

shown by the small COVs, all the parameter values are pinnedproach relies on the robustness of the Gaussian approximation for
down rather precisely by the data. Also, the normalized ef8ors  the FFT with respect to the probability distribution of the re-
are the order of 2 or less, suggesting that the procedure is notsponse signal in order to calculate the updated probability density
producing biased estimates. function for the parameters of a nonlinear model conditional on
Fig. 15 compares, fox; andXx,, the average autospectral es- the measured response. It does not require huge amounts of dy-
timates and the amplitude of the average cross-spectral estimatefamic data, which is in contrast to most other published system
in SQ’fN (zigzag curvepthat are calculated from thd =5 equal- identification methods for nonlinear models and unknown input.
length time segments of data, with the corresponding expectedThe approach provides not only the optimal estimates of the pa-
values inE[S, y|&] (smooth curvesfor the optimal parameter  rameters but also the relative plausibilities of all values of the

Table 5. Identification Results for Four-Story Inelastic Shear Building with Nonwhite Excitaiorample 4

o [a—a]
Parameter Actudd Optimal & Standard deviation COVa=x b=
0, 1.0000 1.0029 0.0142 0.014 0.20
0, 1.0000 0.9792 0.0170 0.017 1.22
03 1.0000 0.9962 0.0210 0.021 0.18
04 1.0000 1.0469 0.0241 0.024 1.95
0y 1.0000 0.9547 0.0303 0.030 1.51
Sto 0.0060 0.0074 0.0008 0.133 1.75
On1 0.0027 0.0032 0.0003 0.111 1.67
T2 0.0081 0.0077 0.0005 0.062 0.80
g 15.708 15.910 0.1123 0.007 1.80
Ly 0.5000 0.5737 0.0296 0.059 2.49
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parameters based on the data. This probabilistic description isKatafygiotis, L. S., and Yuen, K.-M200J)). “Bayesian spectral density

very important and can avoid misleading results, especially in

approach for modal updating using ambient dataatthquake Eng.

unidentifiable cases. For the examples presented, the updated Struct. Dyn.30(8), 1103-1123.

PDFs for the model parameters are well approximated by a mul-

tivariate Gaussian distribution and so the precision with which the

Krishnaiah, P. R(1976. “Some recent developments on complex mul-
tivariate distributions.”J. Multivariate Anal.,6, 1-30.

parameters are specified by the system response data are readihPh: C--H.. and Tsaur, Y.-H(1988. “Time domain estimation of struc-

calculated.
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