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Abstract

The concept of robust reliability is de®ned to take into account uncertainties from structural modeling in addition to the uncertain

excitation that a structure will experience during its lifetime. A Bayesian probabilistic methodology for system identi®cation is integrated

with probabilistic structural analysis tools for the purpose of updating the assessment of the robust reliability based on dynamic test data.

Methods for updating the structural reliability for both identi®able and unidenti®able models are presented. Application of the methodology

to a simple beam model of a single-span bridge with soil-structure interaction at the abutments, including a case with a tuned-mass damper

attached to the deck, shows that the robust reliabilities computed before and after updating with ªmeasuredº dynamic data can differ

signi®cantly. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The assessment of the reliability of a structure is not only

important during its design but also during its operation.

During the design stage, all uncertain factors affecting the

assessment of structural safety should be taken into account.

Therefore, in addition to the uncertain excitation the struc-

ture will experience during its lifetime, the effects of uncer-

tainties arising from modeling errors and assumptions

should be included. These modeling uncertainties are

usually quanti®ed based on engineering judgment and

experience. Using a probabilistic description of these uncer-

tainties, probabilistic structural analysis tools are available

for computing estimates of the structural reliability (e.g.

Refs. [1±5]).

During operation, the condition, and as a result the relia-

bility, of the structure may deteriorate from fatigue or corro-

sion, or from damage induced in structural members or

joints by a severe loading event such as strong wind loads

or earthquakes. Another example of condition change

during operation, which is not necessarily related to struc-

tural damage, is the detuning of tuned-mass dampers (TMD)

installed in a structure to control its vibrational response.

This also may lead to signi®cant reduction of the structural

reliability. Therefore, a methodology is needed to re-assess

the reliability of the structure after it has been built by

monitoring its dynamic response [6,7]. The updated relia-

bility may be used to identify potentially unsafe structures,

to schedule inspection intervals [8], repairs or maintenance,

or to design retro®tting or control strategies for structures

which are thought to be vulnerable to possible future severe

loads.

The objective of this study is to present a general frame-

work for a robust measure of structural safety and reliability

and a methodology for updating it using dynamic test data.

The concept of robustness is used here in a sense similar to

that in robust control to mean that modeling uncertainties

are taken explicitly into account so that the calculated relia-

bility is not sensitive to these uncertainties [9±14]. More

generally, one can de®ne robust analysis to mean the analy-

sis of the response of a system taking modeling uncertainties

into account. The framework presented here for the special

case of robust reliability applies also to robust analysis.

In this work, robust reliability is de®ned using the theo-

rem of total probability to be the integral over a speci®ed set

of possible models of the conditional reliability for a given

model weighted by the probability of that model. To update

the robust reliability using measured response data, a Baye-

sian probabilistic framework for system identi®cation [15±

17] is integrated with probabilistic structural dynamics

tools. This system identi®cation methodology provides
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more accurate representations of the uncertainties asso-

ciated with the structural modeling because it is based on

both measured data and prior engineering information.

Using the updated distribution of the system model para-

meters, a methodology is presented for computing the relia-

bility of structures subjected to uncertain future

environmental loads, such as earthquake and wind loads.

The methodology is general and can be applied to both

linear and non-linear models. It complements a Bayesian

probabilistic approach to structural health monitoring

which examines the probability of structural damage in

prescribed substructures [18±23].

2. Model updating during monitoring

Model updating is used herein to identify and quantify

changes in the condition of the structure. These changes

along with their corresponding uncertainties are needed

for evaluating structural integrity and updating structural

reliability. Reviews and textbooks on available model

updating techniques based on measured dynamic data can

be found in the literature although probability-based

approaches are rarely mentioned (e.g. Refs. [24±27]). This

section gives a brief summary of a probabilistic system

identi®cation methodology [16,17,28,29] which is well-

suited for quantifying the modeling uncertainties needed

in updating the robust structural reliability. The probabilis-

tic system identi®cation methodology [17] allows for the

explicit treatment of the uncertainties arising from both

measurement noise and modeling errors by providing a

probabilistic description of not only the structural models

but also the prediction error for each structural model from a

prescribed class of models. It also allows for the explicit

treatment of the ill-conditioning and non-uniqueness arising

in the model updating inverse problem. Applications of the

probabilistic system identi®cation methodology, including

illustrative examples, in model updating, damage detection,

and optimal sensor location can be found in other Refs.

[18±21].

The model updating is handled by embedding a class of

structural models M, parameterized by the parameter vector

u [ Rm
; within a class of probabilistic models which

account for model prediction error. The vector u contains

the free parameters which need to be assigned values in

order to choose a particular model, designated by M(u),

in M. Let q�n; u� be the model response vector at Nd DOF

at time tn � nDt; where Dt is a prescribed time interval. The

input for calculating the model response q�n; u� is assumed

to be prescribed. For given dynamic test data DN consisting

of sampled input and output histories, the model prediction

error, e�n; u�; satis®es the relation

y�n� � Soq�n; u�1 Soe�n; u� �1�
where y�n� [ RNo ; n � 1;¼;N; are the sampled output

histories at No observed DOF of the structural model, N is

the number of sampled data, and So is a matrix that selects

only those degrees of freedom where measurements are

made. The prediction error, e�n; u�; which accounts for

modeling errors and measurement noise, is quanti®ed by

choosing a class of probability models P, parameterized

by a parameter set s.

The class of probability models MP which is de®ned by

the selection of the classes M and P, is thus parameterized

by [u, s]. Using Bayes' theorem, the initial (ªpriorº) prob-

ability density function (PDF), p�u;suM� � p�u;s�;
prescribed as a model for the relative plausibilities of each

of the models in MP speci®ed by the parameters �u;s�; is

converted to an updated (ªposteriorº) PDF, p�u;suM;DN�;
which gives the relative plausibilities of the models based

on the inclusion of the measured data, DN, as

p�u;suM;DN� � kp�DN uu;s;M�p�u;s�: �2�
In this updating procedure, the PDF for the system data,

p�DN uu;s;M�; depends on the probability model chosen

for the prediction error e�n; u� at time tn � nDt: In this

work, the probability model chosen for the prediction

error corresponds to discrete Gaussian white noise where

each component of e�n; u� is independent with zero mean

and a variance of s 2 which is also updated along with the

structural model parameters [17].

For a large number N of available data, it is found that the

updated marginal PDF p�uuM;DN� of the structural model

parameters u is given by p�uuM;DN� � cJ�u�2�NoN21�=2 and

it is concentrated in the neighborhood of a manifold S in

the parameter space. Here, J�u� is a positive measure-of-®t

function between the measured response and the model

response at the measured DOFs, de®ned by

J�u� � 1

NoN

XN
n�1

iy�n�2 Soq�n; u�i2
: �3�

For a suf®ciently small number of model parameters for

updating, the dimension ms of this manifold S is zero,

that is, the updated PDF is concentrated in the close neigh-

borhood of isolated points in the parameter space. These

points are referred to as optimal parameter values, and

they correspond to the structural model parameter values

which globally minimize J�u� [17]. They give the most

probable parameter values based on the data DN alone.

Even in the case of linear dynamic models, J�u� is a non-

linear non-convex function of the parameters u and, there-

fore, it may possess multiple global minima [16,28,30]

designated by ûk; k � 1;¼;K: Thus, when the dimension

of S is zero, there may be a unique optimal parameter

(global identi®ability; K� 1), or a discrete set of optimal

parameters (local identi®ability; K . 1). Under the assump-

tion of a bounded parameter domain, the number of optimal

parameters is ®nite in identi®able cases. The optimal para-

meters ûk; k � 1;¼;K; satisfy J�û1� � ¼ � J�ûK� � ŝ 2
;

where ŝ 2 is the optimal value of the variance of the

prediction error. These optimal parameter values therefore
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correspond to structural models that have the same response

at the measured DOFs to within the accuracy speci®ed by ŝ :
Algorithms for resolving the problem of ®nding all opti-

mal parameters in identi®able cases have been presented

[16,28,31]. In these cases, the PDF decays rapidly in all

directions around each optimal point and the updated PDF

can be asymptotically approximated by a weighted sum of

Gaussian distributions, centered at the optimal parameters

[17]. It is convenient in approximate calculations to further

simplify the updated PDF as a weighted sum of Dirac delta

functions, instead of Gaussian distributions, centered at the

optimal points, that is,

p�uuM;Dn� <
XK
k�1

wkd�u 2 ûk� �4�

where each weighting coef®cient wk in this sum re¯ects the

relative volume of the updated PDF contained in the neigh-

borhood of signi®cant probabilities of the corresponding

optimal point, ûk: It can be shown that the coef®cient wk

is given by [17]

wk � c1uA�ûk�u21=2
p�ûk; ŝ� �5�

where the matrix A�ûk� is the Hessian of the function

�NoN=2� ln J�u� evaluated at ûk; and c1 is a normalizing

coef®cient such that
PK

k�1 wk � 1: The approximation (4)

leads to the correct asymptotic approximations for large

sample sizes N for the integrals giving the predictive PDF

of the response and the response reliability but the same

results can be rigorously derived without using Eq. (4) [17].

In other cases, the number of optimal solutions minimiz-

ing J�u� in Eq. (3) may be either in®nite, forming a manifold

S of dimension ms larger than zero (strictly unidenti®able

case), or it may be ®nite but the decay of the PDF in the

neighborhood of the various optimal points may not be rapid

enough in all directions (ªalmostº unidenti®able case). In

the latter case, the neighborhoods of signi®cant probabilities

corresponding to different optimal points may either over-

lap, or they may extend over larger regions so that the earlier

Gaussian approximation derived for identi®able cases is

inaccurate. In this ªalmostº unidenti®able case, the mani-

fold S, in the close neighborhood of which all points with

signi®cant probabilities are contained, is of dimension

larger than zero, extending along the directions of the para-

meter space where the PDF decays slowly. In addition to

containing all optimal points, the manifold S in this case

may contain many other points us [ S which are ªalmostº

optimal in the sense that their corresponding value of the

measure-of-®t function J�us� is almost equal to the global

minimum. Thus, all points along the manifold correspond to

structural models which are almost output equivalent in the

sense that they give essentially the same response at the

measured DOFs to within the accuracy speci®ed by

the optimal prediction variance ŝ 2�us� � J�us�:
It has been shown that in unidenti®able cases one can

proceed with approximations analogous to identi®able

cases. More speci®cally, making use of the fact that the

updated PDF p�uuM;DN� decays very rapidly in the direc-

tion perpendicular to the manifold S, it can again be conve-

niently approximated as a weighted ªsumº of Dirac delta

functions centered at the points of the manifold S as

follows [29]:

p�uuM;DN� <
Z
S

w�us�d�u 2 us� dus �6�

where the weight w�us� accounts for the volume of the PDF

in the neighborhood of each point us in the direction perpen-

dicular to the manifold, and dus denotes integration along

the manifold. The weighting function w�us� is speci®ed for

all point us [ S by:

w�us� � c2J�us�2NoN=2uB�us�u21=2p�us; ŝ�us�� �7�
where c2 is a normalizing constant ensuring that the integral

of w�us� over the manifold S of dimension ms is equal to

unity, B�us� is a matrix of dimension m 2 ms corresponding

to the Hessian of the function �NoN=2� ln J�u� considered in

the subspace which is perpendicular to the manifold S at

the point us; and ŝ 2�us� � J�us�:
The manifold can be adequately represented using a set of

closely spaced points on S. Ef®cient adaptive algorithms

for calculating a set of such representative points have been

developed [29,32]. The representation (6) is adequate for the

response PDF or reliability computations, provided that the

response or reliability conditional on u varies slowly with u
over the domain of non-negligible values of the PDF

p�uuM;DN� in the direction perpendicular to the manifold

S. For most practical applications, such a representation is

accurate since the PDF decays very rapidly in the direction

perpendicular to the manifold S for large sample sizes N.

The representation (6) can be viewed as an extension of the

representation (4) to the case for which the manifold S has

dimension ms . 0:

Note that the existence of the manifold S with dimension

lower than the dimension of the original space of model

parameters u signi®es that there is a strong correlation of

the model parameters only along the speci®c manifold S
identi®ed using the test data. Such correlation cannot be

quanti®ed by prior subjective PDFs which are based on

engineering judgement alone. This strong correlation

along certain directions in the parameter space is expected

to signi®cantly affect the predictions of response and relia-

bility, especially at the DOF which are not measured.

Note also that the above Bayesian framework for model

updating enables one to account for all probable models in a

rational manner, and thus overcomes many of the dif®culties

and limitations faced by most deterministic model updating

methodologies. The deterministic methods, such as least-

squares methods based on the same measure-of-®t as in

Eq. (3), can only handle making predictions using one

updated model. They are therefore suitable only for model

updating cases which are globally identi®able.
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3. Robust reliability and its updating during monitoring

In the updating process, we focus on computing the

robust failure probability, the complement of the robust

reliability. We start with the probability of failure of a struc-

ture with known model parameters, P�Fuu;M�; also

referred to as the conditional probability of failure. It is

assumed herein that P�Fuu;M� is available or it can be

evaluated using probabilistic structural analysis tools. For

example, for a prescribed future stochastic excitation, this

can be approximated using available random vibrations

theories, such as Rice's theory using the outcrossing rate

[33].

To evaluate the robust failure probability of the system

when the system model is uncertain, one must evaluate a

weighted integral of the conditional failure probabilities

over the whole parameter space. The weighting function

in the integral is the PDF of the possible models of the

system. In the case where no dynamic data is available,

the initial PDF p�uuM� of the model parameters is involved,

and the theorem of total probability gives:

P�FuM� �
Z
Q

P�Fuu;M�p�uuM� du; �8�

where p�uuM� is usually chosen to be of a convenient math-

ematical form which is roughly consistent with the engi-

neer's judgment regarding the relative plausibilities of

each model given by the parameters u; and Q is a subregion

of Rm. This integral is dif®cult to evaluate, unless only a

small number of model parameters u are involved so that

numerical integration can be performed. Otherwise, more

computationally ef®cient approximations must be used,

such as importance sampling methods [3,5,34].

An asymptotic result that has proved effective for ef®cient

approximate calculation of reliability integrals may also be

used [5]. The signi®cance of this asymptotic result is that it

involves a direct and simple calculation and yet it provides

an accuracy comparable to that of second order reliability

(SORM) approximations [2]. The implementation of this

result involves the maximization of the integrand of the

reliability integral (8). It must be noted that more than one

ªdesign pointº, corresponding to multiple local maxima of

the integrand, may exist and in this case all (or several) of

these points may need to be included in the calculation in

order to achieve accurate results [34]. A robust method for

®nding multiple maxima is presented in Ref. [31].

In the case where dynamic data DN are to be used to

update the robust failure probability of the system, the

updated PDF p�uuM;DN� described earlier replaces the

initial PDF in Eq. (8), and the theorem of total probability

gives:

P�FuM;DN� �
Z
Q

P�Fuu;M�p�uuM;DN� du: �9�

This integral is also dif®cult to evaluate, unless only a small

number of model parameters u are involved. In fact, it is

even more dif®cult to evaluate numerically than the integral

(8) because for large amounts of data (large N), p�uuM;DN�
is negligible except on the low-dimensional manifold S in

the parameter space Q which was described in an earlier

section. Therefore, an ef®cient asymptotic approximation

for large N is used.

One must distinguish between identi®able and unidenti®-

able cases. In the identi®able case, the integral for the robust

failure probability may be decomposed into a ®nite sum of

integrals over K disjoint subregions of the parameter space,

where each subregion contains only one optimal point, ûk:

In each subregion, the aforementioned asymptotic result

must be employed. Utilizing the representation (4) for

p�uuM;DN�; and assuming a large number N of data is

available, the robust failure probability of the structure

given in Eq. (9) can be well approximated as a weighted

sum of the conditional probabilities of failure corresponding

to each optimal value of the parameters:

P�FuM;DN� <
XK
k�1

wkP�Fuûk;M� �10�

In an unidenti®able case and for a large number N of data,

the region of the parameter space contributing to the prob-

ability of failure integral is concentrated in a close neighbor-

hood of the manifold S, as discussed in the previous

section. In this case, utilizing the representation (6) for the

updated probability distribution of the parameters, the in-

tegral (9) for the updated failure probability simpli®es to the

following weighted integral of the conditional probabilities

of failure over the manifold S:

p�FuM;DN� <
Z
S

w�us�P�Fuus;M� dus: �11�

It can be readily shown that Eq. (11) is asymptotically

correct for large number of data. Also, Eq. (10) is a special

case of Eq. (11) for which the dimension of the manifold

ms � 0: However, the numerical techniques required for

calculating the manifold S in the general case of ms . 0

are substantially different from existing techniques applic-

able to the case ms � 0 for which the manifold consists of

isolated points. Algorithms for the calculation of a low-

dimensional manifold S have been presented [29,32], in

which the manifold is represented by a discrete set of points

uk; k � 1;¼;K; non-uniformly distributed along the mani-

fold S. Using simple numerical integration algorithms to

approximate the integral (11), the robust failure probability

conditional on the test data is obtained as

P�FuM;DN� <
XK
k�1

wkP�Fuuk;M�: �12�

Explicit expressions for the weights wk are available [29] in

the form wk � I�uk� w�uk�; where w�uk� is given by Eq. (7)

and I�uk� accounts for the non-uniform distribution of the

generated points uk; k � 1;¼;K; on the manifold S, as well

as accounting for the type of numerical integration formula
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used. Thus, once the points uk; k � 1;¼;K; and the corre-

sponding weights wk are available, the computation of the

robust failure probability P�FuM;DN� is approximated by

a weighted sum of the conditional failure probabilities

P�Fuuk;M� evaluated at the discrete points uk; k �
1;¼;K; on the manifold S.

4. Applications

4.1. Bridge on elastic foundation

Consider a single-span bridge and assume that the two-

dimensional 10-DOF linear ®nite element model shown in

Fig. 1 simulates its actual behavior. Speci®cally, the rota-

tional and translational springs at the abutments represent

stiffnesses corresponding to soil-structure interaction. The

values of the system parameters are: kyA � 1:1ky; kyE �
0:9ky; kuA � 1:2ku and kuE � 0:85ku; where ky � 107 N=m

and ku � 105 N m: Also, the bending rigidity of the deck

elements AB, BC, CD and DE are 0.95EI, 1.05EI, 0.9EI and

0.95EI, respectively, where EI � 109 N m2
: The lumped

masses are equal to mA � mE � 8 £ 103 kg; and mB �
mC � mD � 16 £ 103 kg: The damping is 1% of critical

damping in each mode of vibration. In what follows, this

model is assumed to be representative of the actual behavior

of the bridge structure and is referred to as the actual

structure.

In order to simulate modeling errors that are always

present in the modeling of actual structures, we de®ne a

class of models M where the stiffness matrix of the model

is parameterized by introducing the four non-dimensional

parameters: u 1, u 2, u 3 and u 4, where u 1 and u 2 scale the

translational spring constants such that kyA � u1ky; kyE �
u2ky; respectively; u 3 scales the rotational spring constants

such that kuA � kuE � u3ku; and u 4 scales the bending rigid-

ity which is assumed to be uniform along the deck with

value u 4EI. The mass matrix and modal damping for each

model in M is set equal to the exact values for the bridge.

Notice that the actual structure does not correspond to any

model in the class M. Also, the nominal model of the

bridge, which for a real bridge would correspond to a pre-

test ®nite element model used in the design stages, is taken

from the class M by specifying the values of the model

parameters u.

In this study, the reliability of the structure to future earth-

quake excitations will be considered. For simplicity, the

earthquake excitation is modeled by white noise and the

conditional reliability estimates for a particular model of

the bridge are based on well-known approximate random

vibration results for linear structures. For demonstration

purposes, the base motions at the two abutments are

assumed to be fully correlated and to have the same spectral

density. More realistic descriptions of the ground motion,

including spatial correlation [35], could readily be incorpo-

rated. However, this is outside the scope of the present

example that is concerned primarily with demonstrating

the robust reliability updating methodology.

The system is considered to have failed under the earth-

quake excitation if a response quantity x(t) of the bridge

exceeds a threshold level b over a duration T. The objective

is to compare the nominal and robust reliability for the

bridge at the initial design stage, before any data are

collected, with the updated robust reliability at the opera-

tional stage during which the test data are collected.

For given model parameters u, the conditional probability

of failure is approximated by [33]

P�Fuu;M� � 1 2 exp�22v�u�T� �13�
where v�u� is the rate of outcrossing level b, given by

v�u� � 1

2p

s _x�u�
sx�u� exp 2

b2

2s 2
x �u�

" #
�14�

The quantities sx�u� and s _x�u� are the standard deviations

of the response x(t) and its derivative _x�t�; respectively.

These standard deviations of the response are readily

obtained for a linear system subjected to white excitation

by using the Liapunov equation for the covariance matrix

[33,36]. Speci®cally, consider the state vector y�t� consist-

ing of response displacements and velocities at the model

degrees of freedom of the bridge system. From linear system

analysis, the state vector satis®es the state space equation

_y�t� � A�u�y�t�1 b�t� �15�

C. Papadimitriou et al. / Probabilistic Engineering Mechanics 16 (2001) 103±113 107
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where A�u� is the system matrix depending on the mass,

stiffness and damping properties of the bridge, and b�t� is

the white noise excitation vector process. For the stationary

case, it is well-known that the covariance matrix Qy�u� �
E�yyT� of the state vector satis®es the Liapunov equation

A�u�Qy�u�1 Qy�u�AT�u�1 2pS � 0 �16�
where S is the spectral density matrix of the excitation

process b�t�: Using the general relationship z�t� �
C�u�y�t� between any system response quantities of interest

and the state vector, where the matrix C�u� may depend on

the system parameters, the covariance matrix of z�t� is

®nally obtained from the relation Qz�u� � E�zzT� �
C�u�Qy�u�CT�u�: The quantities sx�u� and s _x�u� involved

in Eq. (14) are directly obtained by selecting z � �x; _x�T in

this formulation.

In the design stage, the reliability of the system may be

computed using a nominal model or using the set M of

possible models for the bridge. In the ®rst case, the uncer-

tainties in the model are ignored and the bridge is repre-

sented by nominal model parameters ~u: The nominal failure

probability of the system is then simply P�Fu ~u;M�: In the

second case, uncertainties are included in the modeling and

they are quanti®ed by specifying the initial PDF p�uuM�:
The PDF selected to model uncertainty in the model

parameters u is based on independent and lognormally

distributed components u i that have their most probable

value at the nominal value ~u i and that have the same coef®-

cient of variation gi � 20%: The robust failure probability,

P�F=M�; of the system is then given by the integral (8).

This four-dimensional integral is estimated by two methods,

an asymptotic expansion, which is well-suited for approx-

imating the value of this type of probability integral, and an

accurate importance sampling method. The details of these

methods are described in Ref. [5].

We now suppose that the bridge is built and response data

are available to update the model of the bridge and its robust

reliability. The model updating is based on measurements of

the ground acceleration �y�t� at the supports and the absolute

acceleration of the translational DOF at the midspan C of

the bridge deck, as shown in Fig. 1. Simulated measured

data are used in this example. The input ground acceleration

history was taken to be the north±south component of the

1940 El Centro earthquake record. The measured response

was simulated by ®rst calculating the absolute acceleration

response of the structure at the midspan C and then adding

20% rms Gaussian white noise. Twenty seconds of data with

sampling interval Dt � 0:02 s were used, giving a total of

N � 1000 data points.

It was found that for this example the parameters u �
�u1; u2; u3; u4� are almost unidenti®able and the set of almost

optimal model parameters forms a one-dimensional mani-

fold S in the four-dimensional parameter space. This mani-

fold was calculated using a new algorithm [29] which

represents the manifold S by a discrete set of points uk; k �
1;¼;K; needed in the implementation of Eq. (12). Fig. 2

shows the manifold plotted in the (u 1, u 2, u 3)-space and in

the (u 1, u 2, u 4)-space. Fig. 3 shows an example of the varia-

tion with u 3 of the weights in Eq. (12) corresponding to the

points on the manifold. A relatively large uncertainty in the

ªoptimalº values of u over the one-dimensional manifold is

observed. The updated robust failure probability

P�FuM;DN� for this case is computed using Eq. (12).

The nominal, robust and updated robust failure probabil-

ities, P�Fu ~u;M�; P�FuM� and P�FuM;DN�; respectively,

re¯ect increasing levels of knowledge and sophistication

regarding the model uncertainties. These failure probabil-

ities are computed for the following three cases of response

x(t): the displacement at the midspan C relative to the aver-

age of the left and right abutment displacements (giving a

measure of the deck deformation), the restoring moment at

the right abutment E, and the displacement of the left abut-

ment A relative to the ground. The results for these three

cases are tabulated in Tables 1±3.

In practice, the nominal model is based on idealized

modeling assumptions and information available when the

structure is designed, so it cannot be expected to re¯ect the

actual behavior of the structure or its behavior after dete-

rioration from severe environmental effects has occurred.

To simulate the effects of modeling errors, that is, that the

actual structure can be signi®cantly different from the

chosen nominal model, the underlying system is kept
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Fig. 2. Manifold of almost optimal models.

Fig. 3. Weights along manifold.



®xed and various choices are made for the nominal model

parameters ~u: The values of ~u shown in Tables 1±3 are

selected to simulate different levels of model error. Most

of the choices of the nominal model shown in the ®rst

column of these tables lead to a model that is stiffer than

the actual system.

For a given assumed nominal values ~u; the choice of

threshold level b and the strength S0 of the white noise

excitation, representing the capacity and demand in design,

is such that the nominal failure probability, P�Fu ~u;M�; is

equal to 1 £ 1024
: This simulates the situation where engi-

neering designs based on nominal values, ~u; of the structural

parameters usually correspond to some speci®ed failure

probability. It is easily seen from Eqs. (13), (14) and (16)

that the failure probabilities depend only on the ratio b=
���
S0

p
;

referred to in this work as the normalized threshold. In

Tables 1±3, the values of the ratio b=
���
S0

p
which correspond

to the nominal failure probability 1 £ 1024 are given in the

second column of these tables. The duration T of the

response is taken to be ten times the fundamental period

of the nominal bridge model. The last column in Tables

1±3 gives the failure probability for the actual bridge

model which was used to generate the stimulated

ªmeasuredº data. Notice that these values change from

row to row because the normalized threshold b=
���
S0

p
is chan-

ged to keep the nominal failure probability (column 2 in the

tables) at a constant level.

Comparing the values of the nominal failure probability,

P�Fu ~u;M�; and the actual failure probability (columns 2

and 6 in the tables), it can be seen that the uncertainties in

translational and rotational soil stiffnesses have an impor-

tant in¯uence on the failure probabilities for the restoring

moment at the right abutment and for the displacement at

the left abutment but they have a lesser effect on the displa-

cement at the midspan. This is because the effect of the

uncertainties in the abuttment stiffnesses gets ªsmoothed

outº to some extent for the midspan response, but not for

the response at the abutments where the uncertain soil

springs are located. Uncertainties in the bending rigidity

of the deck play an important role for all response quantities

because the deck is more ¯exible than assumed in the

design.

Columns 3 and 4 in Tables 1±3 give the robust failure

probability P�FuM� using the ef®cient asymptotic approx-

imation and the accurate importance sampling method,

respectively [5]. By comparing columns 3 and 4 in these

tables, it can be seen that the results from the asymptotic

expansion are suf®ciently accurate since they are close to

those obtained by the importance sampling method.

Comparing the nominal failure probability P�Fu ~u;M� and

the robust failure probability P�FuM�; it can be concluded

that taking account of modeling uncertainties during design

is very important. The robust failure probability is an order

of magnitude larger than the nominal failure probability for

the mid-span displacement and two orders of magnitude

larger for the right-abutment restoring moment and the

left-abutment displacement.

The updated robust failure probability P�FuM;DN� and

the actual failure probability are very close (see Table 1) at

the measured DOF at the midspan of the bridge which

re¯ects the fact that predictions at measured DOFs are

expected to be good for all models uk; k � 1;¼;K along

the manifold S. However, the updated failure probability at

unmeasured DOFs (see Tables 2 and 3) differs from the

C. Papadimitriou et al. / Probabilistic Engineering Mechanics 16 (2001) 103±113 109

Table 1

Failure probability of midspan displacement

~u Normalized threshold Nominal Robust (Asymp.) Robust (IS) Updated robust Actual

1111 6.86 1.00 £ 1024 9.72 £ 1024 1.08 £ 1023 1.78 £ 1024 1.75 £ 1024

2111 6.85 1.00 £ 1024 9.79 £ 1024 9.96 £ 1024 1.88 £ 1024 1.85 £ 1024

1211 6.85 1.00 £ 1024 9.79 £ 1024 9.86 £ 1024 1.88 £ 1024 1.85 £ 1024

1121 6.73 1.00 £ 1024 8.73 £ 1024 9.22 £ 1024 2.75 £ 1024 2.70 £ 1024

1112 4.14 1.00 £ 1024 1.05 £ 1023 1.06 £ 1023 1.96 £ 1021 1.95 £ 1021

2211 6.83 1.00 £ 1024 8.49 £ 1024 1.05 £ 1023 1.95 £ 1024 1.92 £ 1024

1122 4.10 1.00 £ 1024 9.85 £ 1024 1.02 £ 1023 2.10 £ 1021 2.09 £ 1021

2222 4.08 1.00 £ 1024 9.72 £ 1024 1.05 £ 1023 2.12 £ 1021 2.11 £ 1021

Table 2

Failure probability of restoring moment at the right abutment

~u Normalized threshold Nominal Robust (Asymp.) Robust (IS) Updated robust Actual

1111 5.32 £ 106 1.00 £ 1024 1.17 £ 1022 1.28 £ 1022 2.33 £ 1022 1.82 £ 1025

2111 5.29 £ 106 1.00 £ 1024 1.16 £ 1022 1.25 £ 1022 2.49 £ 1022 2.24 £ 1025

1211 5.38 £ 106 1.00 £ 1024 1.16 £ 1022 1.20 £ 1022 2.14 £ 1022 1.39 £ 1025

1121 10.4 £ 106 1.00 £ 1024 1.02 £ 1022 1.11 £ 1022 5.87 £ 1026 0.00

1112 3.23 £ 106 1.00 £ 1024 1.25 £ 1022 1.38 £ 1022 4.33 £ 1021 8.69 £ 1022

2211 5.33 £ 106 1.00 £ 1024 8.00 £ 1023 1.19 £ 1022 2.29 £ 1022 1.77 £ 1025

1122 6.36 £ 106 1.00 £ 1024 1.17 £ 1022 1.20 £ 1022 3.17 £ 1023 3.49 £ 1028

2222 6.33 £ 106 1.00 £ 1024 1.17 £ 1022 1.30 £ 1022 3.23 £ 1023 4.00 £ 1028



actual failure probability by several orders of magnitude,

depending on the exceedance level b which is different for

each row in the tables. This is due to the fact that each of the

ªoutput equivalentº models along the manifold S gives a

considerably different response at unmeasured DOFs, while

they yield almost the same response at measured DOFs. In

all cases, the updated robust failure probability

P�FuM;DN� is higher than the actual failure probability,

so it gives a conservative result.

The updated robust failure probability P�FuM;DN� is

conditional on the location and number of sensors, as well

as the amount of measured data used. It should be noted that

estimates of the updated robust failure probability for the

restoring moment at the right abutment and the displace-

ment at the left abutment can be improved by placing addi-

tional sensors in the structure or relocating the original

sensor. Optimal sensor location methodologies [19,37] can

prove to be useful in addressing the issue of obtaining the

best reliability estimates from a ®xed number of sensors on

the structure.

4.2. Bridge with TMD appendage

The bridge described in the previous example is now

assumed to be equipped with a TMD attached at its midspan

(point C in Fig. 1). For this example, the objective is to

perform a robust optimal reliability-based design of the

TMD in order to reduce the deformation of the bridge

deck during an earthquake. A robust probabilistic control

design approach is employed in which the parameters of the

TMD are chosen to maximize the target reliability, or,

equivalently, to minimize the failure probability [13,14].

Therefore, the reliability of the structure to future earth-

quake excitations is needed.

The parameters of the TMD to be installed at the midspan

of the bridge are the mass, stiffness and damping coef®cient

which are denoted by me, ke and ce, respectively. Equiva-

lently, the TMD can be speci®ed by the mass me, ®xed-

based natural frequency ve �
�������
ke=me

p
and the damping

ratio ze � ce=2
������
keme

p
: The mass of the TMD is taken to be

equal to 5% of the total mass of the bridge. The damping
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Table 3

Failure probability of displacement at the left abutment

~u Normalized threshold Nominal Robust (Asymp.) Robust (IS) Updated robust Actual

1111 0.431 1.00 £ 1024 9.74 £ 1023 1.08 £ 1022 1.20 £ 1023 6.43 £ 1027

2111 0.232 1.00 £ 1024 2.24 £ 1023 3.28 £ 1023 6.48 £ 1021 2.99 £ 1021

1211 0.440 1.00 £ 1024 5.54 £ 1023 5.69 £ 1023 7.44 £ 1024 2.77 £ 1027

1121 0.432 1.00 £ 1024 9.55 £ 1023 9.80 £ 1023 1.10 £ 1023 5.60 £ 1027

1112 0.490 1.00 £ 1024 4.21 £ 1023 4.55 £ 1023 4.01 £ 1025 1.96 £ 1029

2211 0.224 1.00 £ 1024 5.70 £ 1023 6.79 £ 1023 7.02 £ 1021 3.96 £ 1021

1122 0.491 1.00 £ 1024 4.20 £ 1023 4.42 £ 1023 3.80 £ 1025 1.79 £ 1029

2222 0.256 1.00 £ 1024 9.74 £ 1023 1.02 £ 1022 4.27 £ 1021 7.36 £ 1022

Fig. 4. Failure probabilities versus tuning frequency ratio.



ratio, ze; of the TMD is assumed to be 1% of critical

damping.

For simplicity and demonstration purposes, the system is

considered failed if the displacement response x(t) at the

midspan of the bridge exceeds a threshold level b over a

duration T. Since a linear model is used, this could be

viewed as a serviceability criterion. The conditional prob-

ability of failure for given model parameters u is given by

Eq. (13).

The ®nite-element model of the bridge obtained during

the design phase is assumed to correspond to the nominal

model ~u � �2; 2; 2; 1:5�: Note that this choice corresponds to

an overestimate of the soil spring and bridge deck stiff-

nesses. This discrepancy between the nominal model and

the actual system is purposely considered here to simulate

the effects of model error. For example, signi®cant changes

in stiffnesses are observed in bridges at large response levels

where the equivalent linear model of the bridge is typically

much more ¯exible than an initial ®nite-element model

because of concrete cracking in the main deck and softening

of the soil at the abutments.

Given the values of the TMD parameters me and z e, the

optimal design of the TMD then corresponds to choosing v e

or, equivalently, to choosing the tuning frequency ratio l �
ve= ~v1; where ~v1 is the fundamental frequency of the

nominal model of the bridge, in order to minimize the fail-

ure probability of the system. The duration T of the response

for the reliability calculations is taken to be 10 times the

fundamental period of the nominal bridge model. The

strength S0 of the white noise excitation and the threshold

level b for the midspan displacement are chosen so that the

failure probability for the nominal bridge model is equal to

P�Fu ~u;M� � 1 £ 1024 when the TMD is perfectly tuned to

the nominal bridge model (i.e. when l � 1). This corre-

sponds to a normalized threshold of b=
���
S0

p � 5:65:

Consider the ®rst case where the optimal design of the

TMD is performed by minimizing the nominal failure prob-

ability, so the uncertainties in the modeling are ignored in

the TMD design. The dotted line in Fig. 4 shows the varia-

tion of the nominal failure probability P�Fu ~u;M� with the

tuning frequency ratio l . The optimal value of l for the

TMD design is approximately lopt � 0:87 corresponding to

the minimum of the failure probability P�Fu ~u;M�: The line

with squares in Fig. 4 shows the failure probability of the

actual bridge. The optimal value of l for the actual bridge

model is l � ve= ~v1 � 0:68: If, however, the optimal value

of the TMD frequency v e is normalized instead by the

fundamental frequency v 1 of the actual bridge, then it corre-

sponds to the optimal ratio ve=v1 � 0:85: It is noted that the

nominal failure probability is many orders of magnitude less

than the failure probability corresponding to the actual

bridge system because of the incorrect stiffness values

assumed for the nominal model. Furthermore, the optimal

design value lopt � 0:87 for the TMD based on the nominal

bridge model is very sub-optimal for the actual bridge.

The robust failure probability P�FuM� is also shown in

Fig. 4 as a function of the tuning frequency ratio l , with the

dashed line and the circles corresponding to results obtained

from the asymptotic method and importance sampling

method, respectively [5]. As in the previous example, the

model parameters are assumed to be independent and

lognormally distributed with most probable values equal

to the nominal values ~u and with the same coef®cient of

variation g � 20%. Two hundred samples were used in

the importance sampling method to compute accurate esti-

mates of the failure probabilities. It is obvious from Fig. 4

that the asymptotic method gives results quite close to those

computed by the importance sampling method. Also, the

robust failure probability P�FuM� based on modeling

uncertainties that are speci®ed solely on engineering judge-

ment is closer to the failure probability for the actual system

than P�Fu ~u;M�; which is based on the nominal model and

does not account for modeling uncertainties. The robust

failure probability P�FuM� achieves a minimum at

approximately lopt � 0:75: This optimal design value is

much closer to the value of l � 0.68 that gives the mini-

mum failure probability of the actual bridge. Therefore, use

of the robust failure probability which explicitly treats the

modeling uncertainties leads to a much better design for the

TMD than using the nominal failure probability.

Finally, optimal design of the TMD is performed using

the updated robust failure probability P�FuM;DN� which is

computed based on the updated PDF of the model para-

meters obtained from the system identi®cation procedure

described previously. The updated robust failure probability

shown in Fig. 4 by the solid line is very close to the failure

probability for the actual bridge system, despite the fact that

the chosen class of models M does not include the actual

bridge. This closeness illustrates the value of the informa-

tion gained by the Bayesian system identi®cation method

for updating structural models based on response data. Such

updating not only helps to better estimate the future

response of the structure, but can also lead to prompt correc-

tive actions being taken for upgrading the structural condi-

tion or installing control devices after signi®cant changes in

structural reliability have been observed during structural

health monitoring. For example, the relatively large updated

failure probability P�FuM;DN� indicates that the TMD

would not be effective in accomplishing its intended task.

Appropriate actions would need to be taken to reduce the

response if the initial target failure probability of 1 £ 1024 is

to be achieved, perhaps by increasing the mass of the TMD.

The optimal value of l � ve= ~v1 corresponding to the mini-

mum of the updated robust failure probability in Fig. 4 is

approximately equal to 0.68 or, equivalently, ve=v1 � 0:85;

and it is clearly very close to the one that minimizes the

failure probability of the actual bridge system.

5. Conclusions

The methodology outlined in this work provides a
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framework that integrates developments in probabilistic

model updating with probabilistic analysis tools in order

to update response predictions, in particular structural relia-

bility, based on dynamic data. The proposed methodology

could be used during structural health monitoring to update

measures of structural safety that could be changing due to

deterioration from fatigue or corrosion, or damage induced

by severe environmental effects such as earthquakes, water

waves and wind loads. Application of the methodology to a

beam model of a single-span bridge subjected to earthquake

loads, with soil-structure interaction at the abutments and

with and without a TMD appendage, shows that the struc-

tural reliabilities computed before and after using dynamic

data can differ signi®cantly because of the additional infor-

mation gained about the structure from these data. There-

fore, the measured response of a structure, whenever

available, should be used to update the lifetime reliability

of the structure to give a more accurate picture of its

structural safety.
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