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INFORMATION AND PROBABILITY: Part 2 

Principle of Maximum Entropy 

Suppose discrete variable x has the set of possible values { } { }1
1
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N

N n
n

X x x x
=

= =∪  

and we want to choose a probability model for x. Let fπ specify that the probability 
model is f(x), i.e 

( )| ( ),    x XfP x f xπ = ∀ ∈  
where : [0,1]f X →  is to be established. 

Suppose we wish to impose R constraints on the probability model f(x) that are the 
expected values of R functions gr(x). Let cR be a proposition specifying the constraints: 

( ) ( )
1

" ,   1 ,  are the constraints on probability model f."
N

R r n n r
n

c g x f x r = ,...,Rµ
=

= =∑  

e.g. choose R=2 and ( )1g x x= , ( ) 2
2g x x=  to impose first and second moment 

constraints. 
 

Principle of Maximum Entropy [Jaynes 1957]: Choose that probability model 
f̂ among all possible probability models : [0,1]f X →  that maximizes the entropy of x: 
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Note that any other f would give a smaller entropy and so a lesser amount of missing 
information, implying an information gain compared with f̂ , without any additional 
information being utilized.  

Applying this principle, we introduce Lagrange multipliers ,  0,1,...,r K r Rλ =  and 
impose stationarity of: 
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The maximum entropy probability model is: 
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which belongs to a family of generalized exponential probability distributions, where 
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It can be shown using Jensen’s inequality that f̂ does indeed maximize ( )| fH x π  
(e.g. see Cover and Thomas). 

 
The Principle of Maximum Entropy can be stated in an equivalent form as: 
Principle of Minimum Relative Entropy: Choose that probability model f̂ among 

all possible probability models : [0,1]f X →  that minimizes the relative entropy of x:  

( ) { }( )1
| / | /N

f n fI x I x xο οπ π π π= =  

subject to all of the constraints, i.e. f̂  minimizes the expected information gain coming 
from imposing the additional R constraints given by cR. Here, οπ  denotes the proposition 
stating that the probability model for x is the uniform probability distribution, 
( ) 1| ,  P x x XNοπ = ∀ ∈ , with entropy 2log logK N N= , which is the maximum entropy 

value for a variable with N possible values.  
Proof: 
The equivalence of the principles follows from: 
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Reference: Shore and Johnson (1980). Axiomatic derivation of the Principle of 
Maximum Entropy and the Principle of Minimum Cross Entropy, IEEE Trans. on 
Information Theory, 26, 26-37.  

 

Mutual Information 
 
Defn: Let proposition a imply that { } { }1 1

,  N M
n mb d  are exhaustive and mutually exclusive, 

then the mutual information of these sets of propositions is defined by:  
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by the Marginalization Theorem P7(a) (with nc b=  and mc d= , respectively). 
By Jensen’s inequality:  

{ } { }( )1 1
, | 0N N

n nI b d a ≥  

with equality occurring only if ( , | ) ( | ) ( | ),  ,n m n mP b d a P b a P d a n m= ∀ , i.e the bn and the 
dm are mutually independent. 
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Mutual information is a fundamental measure of the dependence between two sets of 
exhaustive and mutually exclusive propositions, or between two variables { }1,..., Nx x x∈  

and { }1,..., My y y∈  (using " "n nb x x= =  and " "m md y y= = ). It gives the amount of 
information that sets of propositions, or pair of variables, provide about each other. It is 
more fundamental than correlation coefficients or covariance matrices. 

 
Further insight is provided by the following alternative form using axiom P4: 
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This shows that the mutual information gives the expected relative entropy of { }1

N
nb  for 

dm relative to a, so it is a measure of the expected information gain about { }nb  from 

{ }md . Similarly,  
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showing that it is also a measure of the expected gain about { }md  from { }nb . 
Note that to evaluate the mutual information, proposition a must specify a joint 

probability model, i.e. specify ( ), | ,  ,n mP b d a n m∀ . Also, it is easy to show that 

{ } { }( ) { }( ) { }( ) { } { }( )1 1 1 1 1 1
, | | | , |N M N M N M

n m n m n mI b d a H b a H d a H b d a= + −  

where the last term is the joint entropy defined in terms of ( , | ),  ,n mP b d a n m∀ . 
Since the mutual information is never negative: 

{ } { }( ) { }( ) { }( )1 1 1 1
, | | |N M N M
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showing that dependence between the sets of propositions reduces the entropy (the 
uncertainty in which proposition in each set is the one that is true) compared with the 
case where they are considered separately. The exception occurs when the bn and the dm 
are independent, corresponding to I=0. 
 
References:  Some papers applying information-theoretic ideas to dynamical systems: 
 
Vastano, J.A. and Swinney, H.L. (1988). Information transfer in Spatiotemporal Systems. 
Physical Review Letters, 60, 1773-1776 
 
Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461-
464 
 
Kaiser, A. and Schreiber, T. (2002). Information transfer in continuous processes. 
Physica D, 166, 43-62 
 


