Stochastic System Analysis and Bayesian Model Updating
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SYSTEMS
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4 Bayesian linear regression

Introduction:

Consider the following model:

Y=aX+E

where E~N(0,), X ~N(g,,2,) and E L X. We observe Y=Y (data), and

we’d like to know f (x|f ) It is called linear regression because the problem is

linear in the uncertain variable X . Also, note that all uncertainties are Gaussian.

Although this problem is linear, but it can actually handle nonlinearity, e.g.:

A X
Y
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+ P | Y=aX+E

It turns out that f (x | Y ) is also Gaussian, i.e. N(u,,X,) is a conjugate prior. To

see this, observe that

~ f }’}| f ) s (Fear) L T~
f(xw):%“ez( (-] o 55

is log-quadratic in X , so f (x|f ) is  Gaussian.  Therefore,

f(x| ?) = N(ﬂxw’zm) , Where
fyy =ty +Cov(X,Y)Cov(Y) ' (P=E(Y)) =t +5,d" (aS,a” +5) (Y —ap,)

=Xy —Cov(X,Y)Cov(Y)f1 Cov(Y,X)=X,-%,a" (Z+aZXaT)71 aXl,

Proof:

Note that at the mean value of the Gaussian PDF f (x|)9 ), V. f (x|Y)=0. That

means the mean of the Gaussian PDF can be found by solving V _f (x| Y )=0. Also,

the covariance matrix of the Gaussian PDF f (x|)} ) is equal to

-1

(—Vi log[f(x| f)]) . Therefore, we have

My = a'x'a+x} l( X,uX+aTZ_')A’)
r.a'y a+1)1 ( Tl +a' X Y)
La'Ya+1) (4 +2,a"T77)

(o'
=
=
=

2.a'Sa+1) (y +Z,a" SV -2 S ap, + 2" g, )
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=(zea' T a+ 1) [(Tea' s aw 1)y + 3,0 s (T -ap ) |
=gt +(Za' S+ 1) Za"s (P -ap, )

=t +(Za' S a4 1) 2a's (F-ap, )

(PQ+1) P=P(QP+1)"

=u,+X,.a" (aZXaT +):)_1 (?—a,ux)

-1

L, =(-Vlog| f(x ?)})_1 = (a"za+x})
(VO A = A=AV (C+VTAV) V4

=%, -%,d" (E+aZ,d’) aZ,

# Bayesian state analysis on linear Gaussian dynamical systems

Introduction:

For linear dynamical systems with Gaussian uncertainties, the Bayesian state PDF
updating can be done analytically. This is because the updated state PDF is Gaussian
due to the conjugate priors. Moreover, the state PDF can be updated sequentially. The
resulting Bayesian state estimation algorithm is called the Kalman filter.

Consider the following discrete-time linear state-space dynamical system:

Xo=a X, +b_u,_ +W, Xo~N (/Jow ) Z30\0) (state equation)
Y =X, +du, +V, k=1..T (observation equation)

where u, =known system input at time k, W,,V, =modeling error, W, ~N(0,%, ),
Vo~ N(OS,), W LW, (%)), Vi LV,(i%)), W, 1V,, X,1W,, X,1V,; q,

b

s Cos dis Tys Xy, Mo, are known vectors and matrices. This model class

creates a hidden Markov chain.
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Note that under this setting, all uncertain variables are jointly Gaussian; also, the
model class is linear in all uncertain variables. This implies that if we observe data

fz{);],...,fr} , the posterior PDF f(x|?)sf(x0,...,xr|);) is jointly Gaussian,

where

r T1/C 150 TL/ G 15
S (Xg5es X, | Y) = S| X5y X ) f (X X7) _ k=l k=1

f@) f¥)
r e Telop r 1. _ Tl _ _
2(Yk cx—diu ) Ty (Y —cpx —djuy) 2(Xk X ~bee)” By (=@ X —b i)
=const~||e ~||e
k=1 k=1

log f(xyrry | 1) ]

T A ~
= const —%Z[(Yk —cox, —du ) (Y, —c.x, —d,u, )]

k=1
1< T y-1
_EZ[(xk =@ X = b)) Xy O —a % _bk—luk—l):'
k=1
But how do we obtain the mean and the covariance matrix of f(x|Y)? The mean

may be simply, i.e. differentiate log[ S (Xgseees Xy | Y )] w.rt. x, and solve for zero,

we get E(X, |); ). But how about the covariance matrix or even Cov(X, | Y )? Get

the Hessian of —10g[ S (Xg5es Xy |f )] and calculate the inverse? No, we don’t want

to do so since the inversion will be on a huge matrix.

Another class of interesting problems is to obtain f'(x;, | ﬁ:k) , where fu{ = {)A’l,..., I?k} .

One can see that this posterior PDF is also Gaussian, where the mean and covariance

matrix can, again, be obtained by solving the gradient of 10g[ S (Xg5es X, |)A’1:k)] for

zero and also by calculating the inverse of the Hessian of —10g[ S (Xgsees ;| Iﬁ:k)].

But again, we are required to do an inversion on a huge matrix.

Terminology:

A Bayesian filtering problem is to obtain f(x, | ﬁ:k) for all k£, while a Bayesian
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smoothing problem is to obtain f(x, | Y ) forall k.

Kalman filter:

Kalman filter provides a smart way of calculating the mean and covariance matrix of

f(x, |Iﬁ:k) without inverting huge matrices. Basically, Kalman filter is an algorithm

that derives f(x,,, |}}11,‘+1) based on the prior f(x, |}}M) and the new data ?,( or

+

equivalently, derives E(X, ﬁzkﬂ) and Cov(X, k+1|);1:k+1) based on E(Xk|);1:k) ,

al

Cov(X, | };]:k) and the new data )A’kﬂ . One can see once this algorithm is finished, we
can obtain f(x, | fl:k) recursively starting from f(x, | );1:0) = (%) = N> Eq) -

Letus denote 4, = E(X,|Y,) and X, =Cov(X,|Y,).

Algorithm: Kalman filter

1. Starting from g, and X,

My = Gy + bu, ) .
2. ’ (Uncertainty propagation)
Zk+l|k = ak2k|kak +X,

lukﬂ\kﬂ

= i+ Cov( Xy Yoo, 15,) Cov(Y,, 19,) (B = E (% 17,0 )

1A
_ T T _ _
3~ M T Zk+1\kck+1 (Ck+lzk+l\kck+l +X, ) (Yk+1 CraMe dp Uy )

by

(Bayesian update)

k+1jk+1

=X — COV(Xk+1 Y| f}l:k ) COV(YkH | YAI:k )71 COV(YkH s Xy | YAI:k )

-
_ T T T
= Zk+l\k - Zk+l\kck+l (ck+12k+l\kck+l +X, ) ck+lz’k+l\k

Note:

E(Yk+1 PO ) =E (ck+1Xk+l gty Vg | Yy ) = Crabine T it

5\ 5y ;
COV(YkH P ) = COV(Ck+1Xk+1 gt V| Yl:k) = CpnZpapCrn T2y
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COV(Xk+1 Yia | Y’;:k)

:Xk+1 _E(Xk+l | i}l:k ): :Y;m - k+1 | } ‘ }

Yl:k}

- NG . T
= E{_Xk+l _E(Xk+l | Vi )_ _Ck+1Xk+1 gty Vo~ ck+1E(Xk+l o ) _dk+1uk+1:|

_Xk+1 _E(Xk+1 | )’}l:k )_ _ck+1Xk+1 _Ck+1E(Xk+1 | YAl:k )]T ‘fl:k}

+E{|:Xk+l _E(Xk+1 |i}1k):|VkT+1 f/ }

=E{|:Xk+1 _E( k+l | 1/c)i||:Xk+l k+1 | ] ‘ }Ck+1 k+1\1fckr+1

RTS smoother

RTS smoother provides a smart way of calculating the mean and covariance matrix of
f(x, | Y ) (recall that Y= ﬁ;r ) without inverting huge matrices. Basically, RTS

smoother starts from the results from Kalman filter and operates backwards in time,

lLe. obtain 44, and X, based on g, and X, .. One can see once this
algorithm is finished, we can obtain 4, and X, for all k recursively starting from

S (x| V)=N (4r7>24r)- Note that gz, and X, are obtained from Kalman filter.

Now we establish the backward recursive equation that relates 4, and X, to

My and X, First note that

f(xk |Xk+1’YA1:T)=f(xk |Xk+1’Y )EN(:u;\k(XkH)’Z;\k(Xkﬂ))

_________

®
B
)
l

Moreover,
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15 (X)) = Hg + Cov(X, X 19,) Cov (X 18) (X~ (X170 )
= My +Za; (Zkﬂ\k )_1 ( e+l ﬂk+1\k)
S (X,0) =X, —Cov(X,. X, |V, ) Cov(X,,, | ¥, ) Cov(X,.,,. X, |Y,)
=% ~Td! (Ze) @ T =i
Note:
Cov( X, 14 )

_Xk_E(Xk|YA1:k)_:Xk+1 k+l‘ }‘ }

_ oA . .
=E{ Xk_E(Xk| I:k) _aka+bkuk+VVk_akE(Xk|Y]:k)_bkuk:| ‘lek}

Xy _E(Xk | j}]:k )_ _aka _akE(Xk | YAI:k )JT ‘YAlzk}+E{|:Xk _E(Xk | Iazk )}

VVkT Y]:k}

= {_Xk _E(Xk | Y];k )_ _Xk _E(Xk | fl:k )}T ﬁ;k}af :Zk\kakr

Implementing the following identity:

E,(E,(X|Y))=E,(X)  Cov,(X)=E,[Cov,(X|Y)]+Cov,[E,(X|Y)]
One can see that
tyr = E(X, 19,0) = B E(X, 1 X0, ) 1 By | = B[ E(X, 1 X B ) 1 |

= B (3, (X, ) 1) = B + 20 (S ) (X = B )1 )

= e + iy (T )71 (Ao = M)

Xr = Cov(Xk | fw) [COV(X | X, 1r) B4 }+C0v[ (X | X r) | ﬁ;r}
= E[ Cov(X, 1 X1, %, )1 B, [+ Cov| E(X, | 4,07, ) 1Ky |

=}, + Cov| iy (X, 1 By |

=Xy~ Ek‘ka,f (Zkﬂwk )_] gy + Zk‘ka,f (Zkﬂwk )_] Lo (Ekmk )_1 W

Note that the data is not needed for the RTS smoother.

Algorithm: RTS smoother

1. Run Kalman filter first

2. Starting from g, and X,

3. Operate backwards in time
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-1
MHyr = By + Zk|kakT (Zk+l\k) (ﬂkﬂ\r ~ Mk )

r -1 r -1 -1
Zk|T = Zk\k _Zk|kak (Ek+1\k) aKZk\k + Zk|kak (Zk+1\k) Zk+1\T (Zk+1\k) akz‘k\k

Backward sampler:

In many times, we are interested in the maximum state response over the entire time
interval [0,T]. However, from the results of Kalman filter and RTS smoother, we lose
the correlation information between the states of different time. This correlation
information is essential for understanding the maximum state response over time. We

describe an algorithm that draws state time history samples from the posterior PDF

S (Xgseees Xy | Y ). This algorithm requires us to run Kalman filter first.

Note that

£ (o0, 17)

= (o 17) f (s 10 B )oo f (o V6o s ¥ ) f (3 [ 20070, 7)
= £ (% 1o ) (e e Bt ) (3 s B ) f (0 10 B ) £ (o 1)

A strategy is to first sample )A(T from f(x, |);) = N(ly;>Er;), then sample )A(T_,
from f(xT—l |)?raYA1;T-1): N(ﬂ;—l|r—1 ()%T)JZ;—I\T—I) , then sample )?T—Z from

N ( ,u;_m_z (X H),Z;_M_z) and so on to get a sample of the state time history. Do this

many times independently to get independent state time history samples. Afterwards,
we can use these samples to estimate the expected value of the maximum state
response based on the Law of Large Number. Note that the data is not needed for the

backward sampler.

Algorithm: Backward sampler
1. Do Kalman filter first

XT ~ N(ﬂﬂT:ZT\T)
My +Zr-nr-1a;-1 (ZT\T—I )_l ()A(r —Xrro ) >

2. Sample X, ~N )
ZT—I\T—l + ZT—I\T—la]T'—l (ZTlT—l)

1
aT*lzT—llT—l

3. Do(2) N timestoget N i.id.samplesfrom f(x,,...,x, |);)
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% Analytical approximation on Bayesian state analysis of nonlinear dynamical

systems
Introduction:
Many dynamical models are nonlinear or non-Gaussian. In this case, the above
analysis breaks down. However, we can linearize and Gaussianize those models so

Kalman filter, RTS smoother and backward sampler can still work approximately.

Extended Kalman filter: linearization on uncertainty propagation for ¥ = g(X)
Do Taylor expansion on 2(X) around E(X), we get

Y=g(X)=g(E(X))+V g(E(X))(X-E(X))+HOT

Assuming g(-) is roughly linear in the main support region of the PDF  f(x),

main support region of f/(x)

we have
Y =g(X)=g(E(X))+V.g(E(X))-(X-E(X))

T

E(Y)=~g(E(X)) and Cov(Y)=V,g| . Cov(X)-V.g

,x:E( x:E(X)

Note that the truncation error is of 2" order, and the approximation will be poor if
g() is highly nonlinear in the main support region of the PDF [ (x). This method of
approximately propagating the first two moments is sometimes called the
First-Order-Second-Moment (FOSM) method. Under this approximation, any
nonlinear models can be linearized. The resulting Bayesian filtering algorithm is

called extended Kalman filter. We’ll skip the smoothing and backward sampling part.

For non-linear models, we can linearize the state and observation equations:

Xeo =0 (Xu W)
=0 (ﬂngF’”k’O)"'VXA(‘jk (4" 1, 0)- (X~ ") +Vy, 8 (4w, 0)-W,
=V, 0, (1 0, 0) X, +[ 0, (4EE 10,.0) =V 0, (58 1,0l o

R by,
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Y= (X, u.V,)
=, (11, 0)+V o @, (i1, 0)- (X, — 5 )+ Y, @, (1w, ,0) -V,
O \ M=y Uy » D \ Hgpe—r> U5 — My v, Pr \ Bgpemrs Uy »

= VXA. D, (/Jk\k—n”wo)’ X, +[¢k (ﬂk\k—l’uk’O) _VXA. D, (:uk\k—lﬂuk’ ) :u/ijl ]"' VkEKF

[ dyuy

Then proceed with the Kalman filter algorithm. The resulting algorithm is called the

extended Kalman filter.

Unscented Kalman filter: propagate moments by matching moments

Let s=

, consider the Taylor series expansion in the s direction:

=19 i
V=g (X)=g(E(0))+ 2750 x-E(x)
il ds' |,
where
d'g(x) i
a—— = Y%
0s' x=E(X) L) g(X)X:E(X)
d aj’ [ X, -E(X, J
=5 —+..+s5,— | g(x) Z (8 ox,) | g(x)
SRS R Care L
So we get
Y=g(X)

X, -E(X,

g(E(X))"'i%(Z X - EX|| (a/ax )J "g(E(X)): ”X E( )”

=g(E(X))+il,(ZI[X ~E(X))]-(@/x, )j - g(E(X))

i=1 L+

Therefore,

i=1 L Jj=1

E(Y)=g(E(X))+ il‘E[(Z[XJ —E(Xj)] . (a/axj)jl ] -g(E(X))

If g() is an (2p—1)" order polynomial and if we can find another uncertain

variable X(#X) whose first 2p—1 moments are identical to those of X. Define
Y= g(}) tis clear that E(Y)=E(Y). This is because when g(-) isan (2p—1)"

order polynomial and the first 2p—1 momentof X and X are identical,

10
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]

EY)=g(E(X))+ pllE[(

>[x, —E(X,-)]-(a/ax,-)j ]-g(E(X))

j=1

J=1

=g(E(X))+ plE[( An [)‘(j—E()‘(j)](a/axj)J ]-g(E()?))=E(Y)

Note that given the 2p—1 moments of X, X is not unique. A convenient choice is
to take X with the following PDF:

f()_c)=iwl.§()_c—ﬂi), iwi=1 ‘ | |
i=1 i=1 |

X
Ll

where {(4,w,):i=1,..,p} are the locations and weights of the delta functions. We

can adjust the 2p—1 free parameters to match the first 2p—1 moments of X. Now
it is clear that
_ )4
EY)=EY)=3 wg(4)
i=l1

is an exact solution!! We name this approach as the moment matching method (MM).

Consider the case that we would like to estimate the mean and variance of a scalar
function h(X), i.e. we want to estimate E[h(X)] and Var[h(X)], where X is also a
scalar. Also consider the usual case that we cannot analytically determine the gradient
of h(X). For the linearization approach (FOSM), we usually need to evaluate h(.)
function at three points to find E[h(X)] and Var[h(X)] since

h(E(X)+Ax)—h(E(X)—-Ax)
2Ax

E(h(X))=h(E(X)) and Var(h(X))z(

jz Var(X)

The FOSM estimates are exact if the h(.) function is linear in the main support region
of the PDF of X.

With the same computation cost, we can employ a three-point moment matching

method, i.e. let X be the uncertain variable with the following PDF:
3 3

[(®)=2wo(x=4), 2w =1
i=1 i=1

As discussed in the above, we can match the first five moments of X using X . So we

have

11
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3 3

E(h(X))=> wh(4) and E(h(X)*)=Y wh(A)

i
i=1 i=1

The MM estimates for E(h(X)) is exact if the h(.) function is a fifth-order

polynomial (or less) in the main support region of the PDF of X; the FE (h(X )2)

estimate is exact if the h(.) function is a quadratic polynomial (or less) in the main
support region of the PDF of X.

You may wonder how to match moments by selecting appropriate
{(A4.,w,):i=1,..., p}? It is really simple: just solve the following equations:
P

Sw=l o Ywi=E(X) - YwAr=E(x)
i=1 i=1

i=1

When X is some standard uncertain variable, we don’t even need to solve them:

1. If X is uniform, {(/ll.,wi) i=1,..., p} are related to the locations and weights of

Gauss-Legendre quadrature. See the following link:

http://mathworld.wolfram.com/Legendre-GaussQuadrature.html

2. If X is Gaussian, {(/@,Wl.):i =1,..., p} are related to the locations and weights of

Gauss-Hermite quadrature. See the following link:

http://mathworld.wolfram.com/Hermite-GaussQuadrature.html

3. If X is exponential, {(il.,wl.) =1, p} are related to the locations and weights

of Gauss-Laguerre quadrature. See the following link:

http://mathworld.wolfram.com/Laguerre-GaussQuadrature.html

If we use MM to propagate the first two moments E(X, | Iﬁ:k) and Cov(X, | ﬁ:k)
for approximate Bayesian filtering, the resulting algorithm is called the unscented

Kalman filter [1].

Maximum entropy argument
We can think of the extended/unscented Kalman filters as first-two-moment Bayesian

filters based on the maximum entropy principle. In the case that we only want to

propagate the first two moments FE(X, |);1:k) and Cov(X, |);1:k) for nonlinear

12
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dynamical systems, we can argue that the maximum entropy PDF constrained by the

two moments E(X, |);1:k) and Cov(X, |);1:k) is Gaussian.
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