Example: Ground Motion Attenuation

- Problem: Predict the probability distribution for Peak Ground Acceleration (PGA), the level of ground shaking caused by an earthquake
 - Earthquake records are used to update the predictive probability for PGA based on earthquake magnitude M, distance to the fault d, and local soil conditions $G = (G_B, G_C)$ (soil classified A, B or C)
 - Well-known attenuation relation developed by Boore, Joyner and Fumal (BJF, 1993). Let $R = \sqrt{d^2 + h^2}$, h= fictitious depth:

$$\log_{10} (PGA) = b_1 + b_2 (M - 6) + b_3 (M - 6)^2 + b_4 R + b_5 \log_{10} (R) + b_6 G_B + b_7 G_C + \varepsilon$$

$$\triangleq q(M, d, G; b, h) + \varepsilon \qquad (where \ b = (b_1, ..., b_7))$$

 ε = uncertain prediction error modelled as N(0, σ) (max. entropy model)

Example: Ground Motion Attenuation

• **Goal**: Estimate $p(PGA | U, D_N, M)$ for input U = (M, d, G)

- Available set of data $D_N = \{U_n, Y_n : n = 1, ..., N\}$ where $U_n = (M_n, d_n, G_n)$ (magnitude, distance, soil conditions), and corresponding $Y_n = (PGA)_n$ are data from earthquakes at various sites (we use N=271 ground motion records from 20 earthquakes)
- Model class M is $p(PGA | U, \theta)$ from BJF model with specified prior PDF over the model parameters $\theta = (b, h, \sigma)$

Robust posterior predictive probability model:

$$p(PGA|U, \mathsf{D}_{\mathsf{N}}, \mathsf{M}) = \int p(PGA|U, \theta) p(\theta|\mathsf{D}_{\mathsf{N}}, \mathsf{M}) d\theta$$

Bayesian Updating

Bayes Theorem: $p(\theta|\mathsf{D}_N,\mathsf{M}) = c_N p(\theta|\mathsf{M}) \prod_{n=1}^{N} p(Y_n|U_n,\theta)$

- Computing Optimal Posterior Predictive Model
 - Find "optimal" (most probable values) of parameters θ which maximize p(θ|D_N,M), then to O(¹/_N) (Laplace's asymptotic approx.): p(PGA|U,D,M) ≈ p(PGA|U, θ)
 Assumes M is globally identifiable on D_N (θ is unique) and need a
 - Assumes M is globally identifiable on D_N (θ is unique) and need a large amount of data N for an acceptable approximation (updated PDF will then have single sharp peak). Then no need to evaluate c_N and $\hat{\theta}$ is insensitive to the choice of prior PDF
 - Parameter estimation (i.e. using *θ*) is reasonable only under these conditions; otherwise, spurious reduction in uncertainty in predictions

Bayesian Updating (Continued)

Computing Robust Posterior Predictive Model

- Normalizing constant c_N, and p(θ|D_N,M), is difficult to evaluate
 However, if we can generate M samples { θ_k, k = 1,...,M } from p(θ|D_N,M), then we can approximate the robust PDF by the corresponding sample mean:

$$p(PGA|U, \mathsf{D}_{\mathsf{N}}, \mathsf{M}) = \int p(PGA|U, \theta) p(\theta|\mathsf{D}_{\mathsf{N}}, \mathsf{M}) d\theta$$
$$\approx \frac{1}{M} \sum_{k=1}^{M} p(PGA|U, \tilde{\theta}_{k})$$

These samples can be obtained using stochastic simulation methods, e.g. Gibbs sampler, Metropolis-Hastings (more later)

Sampling Posterior (Updated) PDF

- Samples generated using Markov Chain Monte Carlo
- Prior PDF chosen to reflect knowledge (or lack thereof)
 - For the regression coefficients b, take i.i.d. N(0,10), i.e. each has zero mean and standard deviation of 10 (very flat)
 - For the depth parameter h (km), lognormal distribution with mean and variance based on the depth of earthquakes in the data set

Posterior Samples: Model Class 4

Optimal vs. Robust Predictive Analysis

- Results using MCMC samples for robust PDF compared to results for optimal PDF computed from values reported in BJF 93
- User input U=(M, d, G)
 - Magnitude 7.0
 - Distance to fault 30km
 - Site geology is stiff soil

Model Class Selection

Bayesian model class selection (Beck and Yuen 2004) for set *M* of candidate models

$$P(\mathcal{M}_{i} \mid \mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D} \mid \mathcal{M}_{i}) P(\mathcal{M}_{i} \mid \mathcal{M})}{\sum_{j=1}^{I} p(\mathcal{D} \mid \mathcal{M}_{j}) P(\mathcal{M}_{j} \mid \mathcal{M})}, \quad \forall i = 1, ..., I$$

- The *evidence* for model class \mathcal{M}_i is given by $p(\mathcal{D} | \mathcal{M}_i) = \int p(\mathcal{D} | \mathcal{M}_i, \theta_i) p(\theta_i | \mathcal{M}_i) d\theta_i$
- Evaluating the evidence directly by stochastic simulation would require sampling from the prior, which is typically inefficient

Model Class Selection (Continued)

- The evidence may expressed as $\ln[p(\mathcal{D}|\mathcal{M}_i)]$
 - $= \int \ln \left[p\left(\mathcal{D} \mid \mathcal{M}_{i}, \theta_{i} \right) p\left(\theta_{i} \mid \mathcal{M}_{i} \right) \right] p\left(\theta_{i} \mid \mathcal{M}_{i}, \mathcal{D} \right) d\theta_{i} + H \left[p\left(\theta_{i} \mid \mathcal{M}_{i}, \mathcal{D} \right) \right]$
- First term may be approximated from MCMC samples $\int \ln \left[p\left(\mathcal{D} \mid \mathcal{M}_i, \theta_i \right) p\left(\theta_i \mid \mathcal{M}_i \right) \right] p\left(\theta_i \mid \mathcal{M}_i, \mathcal{D} \right) d\theta_i$

$$\approx \frac{1}{N} \sum_{k=1}^{N} \ln \left[p\left(\mathcal{D} \mid \mathcal{M}_{i}, \hat{\theta}_{k} \right) p\left(\hat{\theta}_{k} \mid \mathcal{M}_{i} \right) \right]$$

 Numerous methods for approximating information entropy from samples

Model Class Selection (Continued)

New result generalizes to any model class the conclusion by Beck and Yuen (2004) made for a globally identifiable model class using an asymptotic approximation of the evidence for the model class:

$$\begin{aligned} &\ln\left[p\left(\mathcal{D}\mid\mathcal{M}_{i}\right)\right] \\ &= \int\ln\left[p\left(\mathcal{D}\mid\mathcal{M}_{i},\theta_{i}\right)p\left(\theta_{i}\mid\mathcal{M}_{i}\right)\right]p\left(\theta_{i}\mid\mathcal{M}_{i},\mathcal{D}\right)d\theta_{i} \\ &-\int\ln\left[p\left(\theta_{i}\mid\mathcal{M}_{i},\mathcal{D}\right)\right]p\left(\theta_{i}\mid\mathcal{M}_{i},\mathcal{D}\right)d\theta_{i} \\ &= \int\ln\left[p\left(\mathcal{D}\mid\mathcal{M}_{i},\theta_{i}\right)\right]p\left(\theta_{i}\mid\mathcal{M}_{i},\mathcal{D}\right)d\theta_{i} - \int\ln\left[\frac{p\left(\theta_{i}\mid\mathcal{M}_{i},\mathcal{D}\right)}{p\left(\theta_{i}\mid\mathcal{M}_{i},\mathcal{D}\right)}\right]p\left(\theta_{i}\mid\mathcal{M}_{i},\mathcal{D}\right)d\theta_{i} \end{aligned}$$

= Data Fit - Expected Information Gained from Data

Model Class Selection

 $\log_{10} (PGA) = b_1 + b_2 (M - 6) + b_3 (M - 6)^2 + b_4 R + b_5 \log_{10} (R) + b_6 G_B + b_7 G_C + \varepsilon, \ R = \sqrt{d^2 + h^2}$

Model Class	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	b ₇	h	σ	Prob. (%)
BJF '93	-0.105	0.229			-0.778	0.162	0.251	5.570	0.230	
Model 1	0.312 (0.327)	0.274 (0.034)	-0.082 (0.039)	0.003 (0.002)	-1.079 (0.252)	0.169 (0.036)	0.242 (0.038)	8.668 (2.631)	0.206	0.01
Model 2	0.276 (0.326)	0.223 (0.023)		0.003 (0.002)	-1.079 (0.254)	0.174 (0.036)	0.264 (0.037)	8.424 (2.534)	0.207	0.18
Model 3	-0.076 (0.103)	0.274 (0.034)	-0.076 (0.040)		-0.759 (0.064)	0.165 (0.036)	0.241 (0.038)	6.031 (1.510)	0.206	0.07
Model 4	-0.056 (0.108)	0.226 (0.023)			-0.803 (0.063)	0.172 (0.036)	0.262 (0.036)	6.336 (1.162)	0.207	2.12
Model 5	-0.896 (0.043)	0.222 (0.026)		-0.008 (0.001)		0.143 (0.039)	0.264 (0.041)	1.936 (1.664)	0.230	0.00
Model 6	0.255 (0.114)	0.227 (0.025)			-0.888 (0.072)			7.026 (1.720)	0.225	0.00
Model 7		0.230 (0.022)			-0.834 (0.021)	0.163 (0.033)	0.251 (0.034)	6.834 (1.041)	0.207	97.62

Comparison by Mean Data Fit Only

 $\log_{10} (PGA) = b_1 + b_2 (M - 6) + b_3 (M - 6)^2 + b_4 R + b_5 \log_{10} (R) + b_6 G_B + b_7 G_C + \varepsilon, \quad R = \sqrt{d^2 + h^2}$

Model Class	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	b ₇	h	σ	Data Fit (%)
BJF '93	-0.105	0.229			-0.778	0.162	0.251	5.570	0.230	
Model 1	0.312 (0.327)	0.274 (0.034)	-0.082 (0.039)	0.003 (0.002)	-1.079 (0.252)	0.169 (0.036)	0.242 (0.038)	8.668 (2.631)	0.206	40.67
Model 2	0.276 (0.326)	0.223 (0.023)		0.003 (0.002)	-1.079 (0.254)	0.174 (0.036)	0.264 (0.037)	8.424 (2.534)	0.207	6.62
Model 3	-0.076 (0.103)	0.274 (0.034)	-0.076 (0.040)		-0.759 (0.064)	0.165 (0.036)	0.241 (0.038)	6.031 (1.510)	0.206	35.61
Model 4	-0.056 (0.108)	0.226 (0.023)			-0.803 (0.063)	0.172 (0.036)	0.262 (0.036)	6.336 (1.162)	0.207	7.58
Model 5	-0.896 (0.043)	0.222 (0.026)		-0.008 (0.001)		0.143 (0.039)	0.264 (0.041)	1.936 (1.664)	0.230	0.00
Model 6	0.255 (0.114)	0.227 (0.025)			-0.888 (0.072)			7.026 (1.720)	0.225	0.00
Model 7		0.230 (0.022)			-0.834 (0.021)	0.163 (0.033)	0.251 (0.034)	6.834 (1.041)	0.207	9.52

Posterior Samples : Model Class 7

Х

0

0