Model Class Selectl_

e Given: Data D from system and set M of
candidate model classes

M ={M,,M,,...M,}

where each model class I\/Ij defines a set
of possible predictive models for system:

{p(Y,1U,.6):6,€0;cR"}
& a probability model p(&, | M ;) over this set

Find: Most plausible model class

Goal: Selection of level of model Complexity



Model Class Selection_

R
e Most Plausible Model Class Based

on Data D Prior info
Maximize: V
P(M; [D,M) overall]

® Higher level of robustness: Can

iInclude predictions of all model classes
(model class averaging):

J
p(Y, [U,,D,M)=> p(Y,|U,,D,M;)P(M;|D,M)
j=1




Model Class Selectio_

e Evaluation of Model Class Probability

Bayes Theorem:

Evidence Prior
|/
7 N
oM (D) PLIMIPM; [M)
| p(D[M)

where denominator i1s chosen to normalize
P(M;|D,M) overj=1,...,J




Evaluation of Eviden_

= e

e Total Probability Theorem gives evidence:

p(DIM)) = P(D]6,,M)p(,|M,)d6
J

e Can use asymptotic expansion about MPV

N j N A

“1 p(D|0;,M;)p(0;|M);)

p(D M)~ (2m) 2 —

JdetH (®;)

H.(0,)=-VVInp(D|6;,M;)p@®;|M)




Model Class Selectlon u_

Assume model classes equally plausible
a priori, then plausibility of each model class
M . Is ranked by its log evidence:

j
Inp(D[M;)=In

+[In p((A)j

(D6, M)+

-
M )—1IndetH, (ej)+7|n(27z)}

= log likelihood + log Ockham factor

= Data fit + Bias against parameterization

- Gives a quantitative Principle of Parsimony



Bias Against Paramet_

© Log Ockham Factor pjfor M;

For a Iarge number N of data points |2n D,
N . N —
Pii 1 959,

pj’|

where p? i ZJ .are the prigr and principal posterior
variances for 6; and OJ’,,O .are the prior and
posterior most probable values of 9

=B;j=—5N;InN+O(1) (forlarge N)

So Log Ockham factor decreases with number of
model parameters

Oj.i
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e From asymptotics for large amount
of data N and globally identifiable
model classes (Beck and Yuen 2004):

Log evidence = [Data fit of optimal
model] — [Information gain abouth in D]

Recently generalized this result to any
model class



Comparison with AlIC a

e Bayesian model class selection criterion

Maximize InP(M;[D,M; )wrt M or equivalently
(from asymptotic result)

log evidence = log Ilkellhqod + log Ockham factor
.e. Inp(D|M;)=Inp(D[6;,M,)+B,

e Akaike (1974)
Maximize: AIC = In p(D|é )— N.

® Akaike (1976), Schwarz (1978)
Maximize: BIC = In p(D|6 ) —LinN
(agrees with above criterion for Iarge N except for
terms of O(1) )




Evaluatlon of leellho_

® _|keI|hood functlon p(D IO M;)Is
pased on prediction- errot model:
Predicted response
= (Stochastic) response of model 6 ;

+ Prediction error

In examples, prediction error N1 modeled
as zero-mean Gaussian discrete white
noise with covariance matrix o; |

(I.,e. maximum information entropy PDF)



" Details for dynamical models with input-

output measurements:

e.g. Beck & Katafyqgiotis: “Updating models and their
uncertainties. |I. Bayesian statistical framework”,
J. Engng Mech., April 1998.

® Details for output-only measurements:

e.g. Yuen and Beck: “Updating properties of
nonlinear dynamical systems with uncertain input”,

J. Engng Mech., Jan. 2003.



Evample 1 SDOF HyS SO

MR+ X+ f, (X Ky, Ky, X, ) = F (t)

o fS = bilinear hysteretic restoring force
* f =scaled 1940 El Centro earthquake record
- Simulated noise (5% of rms simulated displacement)

- Prediction error n modeled as zero-mean Gaussian
discrete white noise with variance a,f
l.e. predicted displacement at time step n,

x(n)=x(n)+n(n)




Hysteretic force-displ
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Example 1: Choice of M_

e Model Class 1 (M, - 3 parameters)
Linear oscillators with damping coefficient
c>0, stlffness k, > 0 and prediction-error

variance o,
e Model Class 2 (M, - 3 parameters)

Elasto-plastic oscillators (i.e. k, = 0 ) with
stiffness k; >0, yield dlsplacement X, and

orediction- error variance a

® Independent uniform prior dlstributions on all
parameters




Example 1: Conclusions _

e Class of linear models (M,;) much more
probable than elasto-plastic models

(M,) for lower level excitation, but other
way around for higher levels

e |llustrates an important point: there is
no exact class of models for a real
system and the most probable class
may depend on the excitation level.



Example 2: Modal Model ¥

e Examine most plausible number of modes
based on measured accelerations at the roof
during base excitation

e Excitation not measured; modeled as
stationary Gaussian white noise with
uncertain spectral intensity

e Other model parameters: Modal frequencies,
modal damping ratios and prediction-error
variance




Example 2: Most Probe

Number of modes w1 Wo W3 Wy Whs We Wr wg
Exact 5.789 | 17.24 | 28.30 | 38.73 | 48.30 | 56.78 | 64.00 | 69.79

1 6.946 | — e — - — — —

2 5.799 | 20.68 | — - — —_— — —

3 5.814 | 17.16 | 33.96 | — - — —— —

4 5.842 | 17.18 | 27.94 | 43.82 | — - - — -

5 5.848 | 17.19 | 27.97 | 38.06 | 50.58 | — — -

6 5.849 | 17.19 | 27.97 | 38.09 | 48.10 | 56.72 | — e

7 5.849 | 17.19 | 27.97 | 38.09 | 48.13 | 56.34 | 64.18 | —
8 5.849 | 17.19 | 27.97 | 38.09 | 48.13 | 56.34 | 64.18 | 69.41
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Example 2: Evidence for VOHEINCIEEEEE
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Number of modes | Log likelihood | Log Ockham factor | Log evidence

1
2
3
4
5
6

1894
2251
2511
2619
2682
2714
2723
2723

-43.7
-56.4
-68.9
-69.2
-75.9
el 2
-109

-121

1850

2195

2442

2550

2606

2623 (& BIC)
2614

2602 (AIC)

Probability of model class with 6 modes completely
dominates, e.g. next class has probability 0.0002



Example 2: Frequency Resp
Most Probable 6-

-

Using 6 modes

—

=
=TT
L1 apanl

Ll

_al .

|I‘MIT|||'||--”- W [-T.l L i]w
|

0 20 40 B0 80 100 120
w! (rad/sec)




Concluding Remarks _

e The Bayesian probabilistic approach for
model class selection is generally applicable;
llustrated here for linear & non-linear
dynamical systems with input-output or
output-only dynamic data

® The most plausible class of models is the
one with the maximum probabillity (or
evidence) based on the data

® Rather than taking most probable, can use all
classes by model class averaging (Total Prob.)







