Updating Nonlinear
Dynarnical Models Using
Response Measurernents Only

Reference: Yuen and Beck (2003),
“Updating properties of nonlinear
dynamical systems with uncertain
input”, J. Engng Mech. (at website)













Bayeslan Approach io S\YieRiD,

® Bayes Theorem:

p(a|Yy)=c,p(a)p(Yy |a)

- conditioning on class of models left implicit

- use to update PDF for parameters a based
on measured response:

YN = [y(0)11 y(N _1)]

- likelihood difficult to evaluate for nonlinear
systems subject to stochastic excitation




IDENSI/AppProach

o Key ideas:

- FFT is nearly (complex) Gaussian white
noise for any stationary stochastic process

- Use likelihood function for spectral density
estimates rather than response history

® Reference

Yuen and Beck (2003), “Updating properties of
nonlinear dynamical systems with uncertain

input”, J. Engng Mech. (at website)
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o Asymptotic results for N — oo:
-S, n (@ ) is exponentidly distributed with mean

E\.Sy,N (e )J: E\.Sq,N (e )J"‘ Sno
-S, v (@) &S, \ (@ )areindependent if k |

® Good approximation for large N

-Estimate mean by simulation or sometimes by

At N-1
E[Sq y (@, ]_W > [7mR, (MAt)]cos(mam, At)
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Bayesiar Approach to SYiniD,

e Parameter estimation and uncertainty
- Optimal parameter a by maximizing p(a|S{y
I.e. most probable values given the spectral data
-p(a|S, ') locally approximated by a Gaussian

with optimal parameters as mean and with

riance matrix:
Cov(a) =[Hessian{-In p(a| Sy ")}
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Estimate Prob.
fitting curve

x  EXxact

—— Gaussian

Estimate Prob.
fitting curve

x EXxact

—— Gaussian













Top story hysterlesis!
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Concluding Rernaris

® A Bayesian spectral density approach is available
for system identification of nonlinear systems with
uncertain input. It is based on the FFT of any
stationary response being nearly Gaussian discrete
white noise.

The Bayesian probabilistic framework explicitly
treats both model uncertainty and excitation
uncertainty.




Concluding Rermnaric

® The spectral density matrix estimator for a
stationary vector process follows a central
complex Wishart distribution while it reduces
to an exponential distribution for a stationary
scalar process.

The updated (posterior) PDF is usually well
approximated by a Gaussian distribution
centered at the optimal parameters, so
parameter uncertainty may be conveniently
and efficiently characterized.



















