
EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS
Earthquake Engng Struct. Dyn. 2002; 31:791–812 (DOI: 10.1002/eqe.122)

Tangential-projection algorithm for manifold representation
in unidenti4able model updating problems

Lambros S. Katafygiotis∗;† and Heung-Fai Lam

Department of Civil and Structural Engineering; Hong Kong University of Science and Technology; Clear
Water Bay; Hong Kong

SUMMARY

The problem of updating a structural model and its associated uncertainties by utilizing structural
response data is addressed. In an identi4able case, the posterior probability density function (PDF)
of the uncertain model parameters for given measured data can be approximated by a weighted sum
of Gaussian distributions centered at a number of discrete optimal values of the parameters at which
some positive measure-of-4t function is minimized. The present paper focuses on the problem of model
updating in the general unidenti4able case for which certain simplifying assumptions available for
identi4able cases are not valid. In this case, the PDF is distributed in the neighbourhood of an extended
and usually highly complex manifold of the parameter space that cannot be calculated explicitly. The
computational di>culties associated with calculating the highly complex posterior PDF are discussed
and a new adaptive algorithm, referred to as the tangential-projection (TP) algorithm, allowing for an
e>cient approximate representation of the above manifold and the posterior PDF is presented. Using this
approximation, expressions for calculating the uncertain predictive response are established. A numerical
example involving noisy data is presented to demonstrate the proposed method. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The need for model updating arises because there are always errors associated with the process
of constructing a theoretical model of a structure, which leads to uncertain accuracy in the
predictive response. Because of these modeling errors, model updating is best tackled as a
statistical inference problem. This can be done by embedding the class of ‘deterministic’
structural models within a class of probability models so that the structural models give a
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predictable (‘systematic’) part and the prediction error is modeled as an uncertain (‘random’)
part (Reference [1]). Beck and Katafygiotis [2] presented a general Bayesian statistical system
identi4cation framework which properly handles the uncertainties and non-uniqueness associ-
ated with model updating. Furthermore, they described an asymptotic approximation for the
multi-dimensional integrals that arise when calculating the updated probabilistic predictions
of the structural response. This approximation is valid for identi4able cases, which usually
occur when the number of the updating parameters is relatively small and when the number
of observed data is large. In such a case the posterior PDF of the model parameters is very
peaked at a 4nite number of optimal points, at which some positive measure-of-4t function is
minimized, and it is practically concentrated in the immediate neighbourhood of these optimal
points. In Reference [2] the authors presented an asymptotic approximation for the posterior
PDF of the parameters using a 4nite sum of appropriately weighted Gaussian distributions
centered at the optimal points. They also showed that in this case the probability distribu-
tion of the predictive response can be asymptotically approximated by a weighted sum of
Gaussian distributions centered at the predictive responses of the optimal models. Katafygio-
tis and Beck [3] presented an algorithm for resolving the problem of model identi4ability, that
is, given an optimal model, they resolved the problem of 4nding all other output-equivalent
optimal models. Once the set of all optimal models has been computed based on the algorithm
in Reference [3], one can readily apply the earlier asymptotic approximations to resolve the
model updating problem in a globally or locally identi4able case [2].
The present paper is based on the general Bayesian statistical model updating framework

presented in Reference [2]. Herein we address the computational di>culties associated with
the implementation of this general methodology in an unidenti4able case, where the asymp-
totic approximations presented in Reference [2] are not valid. In this case the posterior PDF
is concentrated in the neighbourhood of an extended and extremely complex manifold in the
parameter space. Analytical representation of this manifold is usually not possible and, there-
fore, issues related to its numerical calculation and its practical representation arise. Herein a
new algorithm, referred to as the tangential-projection (TP) algorithm [4], is proposed for the
calculation of a 4nite set of points on the manifold used for its representation. Speci4cally,
it is proposed that for practical applications the posterior PDF of the model parameters is
approximated by a 4nite number of weighted Dirac delta functions centered at the computed
points on the manifold. Furthermore, the PDF of the uncertain predictive response can be
approximated by a weighted sum of the PDFs of the predictive responses corresponding to
these points.

2. IDENTIFIABLE AND UNIDENTIFIABLE CASES

2.1. Identi+able cases

This work is based on the Bayesian statistical identi4cation framework presented in Beck
and Katafygiotis [2]. The methodology allows for the calculation of the posterior PDF of the
parameters QT = [a; �]T specifying the various models out of a class of probability models
MP for the system output; the parameters a∈ S(a)⊆RNa specify a deterministic model for the
predictable part of the structural response while the parameter � speci4es a probability model
for the uncertain prediction-error. The posterior PDF of the structural model parameters a
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given some measured data DN can be calculated [2] as

p(a |DN ;MP)= c1J (a)−NJ �(a; �̂(a)) (1)

where c1 is a normalizing constant; NJ =(NNo−1)=2 where N denotes the number of sampled
data and No the number of observed DOFs; �(a; �) denotes the prior PDF of the parameters;
and �̂(a), J (a) are de4ned as

�̂2(a)=
1

NoN

N∑

n=1
‖ŷ(n)− Soq(n; a)‖2 = J (a) (2)

where ŷ(n) and q(n; a) are the sampled output time histories and the model output vector,
respectively; So is a selection matrix for the observed DOF. The value �̂2(a) represents the
optimal variance in the prediction error model for given structural model parameters a. Note
that for a large number of observed data points N , which is usually the case in practice, the
exponent NJ in Equation (1) is a large number and, therefore, the relative posterior proba-
bilities of the various structural model parameters a are very sensitive to the corresponding
values J (a). Speci4cally, p(a |DN ;MP) becomes negligible everywhere, except for the re-
gion of the parameter space where the corresponding values of J (a) are very close to the
global minimum �̂2 = min{J (a); a∈ S(a)}. Thus, the region of important probabilities extends
around the points which globally minimize J (a). The parameter values at which J (a) reaches
its global minimum are referred to as optimal parameters. Note that the model output q(n; a)
involved in the de4nition of J (a) in Equation (2) is a non-linear function of the parameters
a, even in the case of linear dynamic models. Therefore, multiple optimal parameter values
may exist for which J (a) might attain its global minimum. This raises the issue of (system)
identi4ability [2] of these parameters. It is reminded that Reference [2] de4nes a parameter
to be (system) identi4able when there exists either only one optimal value for this parameter
(global identi4ability) or, in the case where more than one optimal values exist, when the
distance between any two optimal values is 4nite (local identi4ability). In a (system) iden-
ti4able case the set of optimal parameter points is discrete. Furthermore, assuming that the
parameter domain S(a) is bounded, identi4ability implies the existence of a 4nite number of
optimal points â(k); k =1; : : : ; K , satisfying

J (â(k))= min
a∈S(a)

J (a)= �̂2 (3)

where �̂2 represents the overall optimal variance for the prediction error. The task of 4nding
all global minima of the nonconvex function J (a) is non-trivial. Katafygiotis and Beck [3]
presented an algorithm to resolve locally identi4able cases. Assuming one optimal value to
be known, this algorithm searches e>ciently the parameter space to 4nd all other (if any)
optimal parameter values corresponding to output-equivalent models.
The optimal prediction-error parameter �̂ is always globally identi4able [2] and is given by

Equation (3). Therefore, the issue of identi4ability concerns only the structural model para-
meters a. These parameters could be either (globally or locally) identi4able or unidenti4able.
The larger the dimension Na of the parameter vector a, the more likely it is to encounter
unidenti4ability of a.
Beck and Katafygiotis [2] derived an asymptotic approximation for the posterior PDF of

the structural model parameters a which is valid for identi4able cases and for a large number
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N of sampling points:

p(a |DN ;MP)≈
K∑

k=1
wkN (â(k); A−1

N (â(k))) (4)

where N (\;O), denotes a multivariate Gaussian distribution with mean \ and covariance
matrix O. Equation (4) approximates the posterior PDF of the parameters a with a 4nite
weighted sum of Gaussian distributions centered at the optimal values â(k); k =1; : : : ; K . The
matrix AN (â(k)) in Equation (4) can be shown [2] to be equal to the Hessian of the function
g(a)=NJ ln J (a) evaluated at â(k). Finally the weighting coe>cients wk are given [2] by

wk =
w′

k∑K
k=1 w

′
k

where w′
k =�(â(k))|AN (â(k))|−1=2 (5)

and account for the total probability in the neighbourhood of each optimal point.

2.2. Identi+ability of order R

The asymptotic result (4) assumes that the posterior PDF of the parameters is concentrated
in the close neighbourhood of a 4nite number of optimal points. This result is valid only
under the following two conditions: (i) the structural model parameter vector a is (system)
identi4able under DN and (ii) the number of measured data N is su>ciently large. The reasons
for which these two conditions are necessary are as follows. The 4rst condition, namely that
of identi4ability of a, is required by Equation (4) because it ensures that the set of optimal
parameters consists of discrete points. Furthermore, assuming that the parameter domain S(a)
is bounded, system identi4ability implies the existence of a 4nite number of optimal points.
On the contrary, according to Reference [2] in an unidenti4able case there exists an in4nite
number of optimal points and the set of these points is not discrete but continuous. A simple
example of such an unidenti4able case is that of a SDOF oscillator subjected to ground motion
when both the mass and stiPness are included in the parameters to be updated. It is easy to
verify in this case that, given an optimal model, all other models with proportional mass
and stiPness are output-equivalent and, therefore, also optimal. In this case the set of optimal
points corresponds to a straight line in the parameter space and the posterior PDF of the
parameters is concentrated in the neighbourhood of this line rather than being concentrated in
the neighbourhood of a discrete set of points as assumed in the aforementioned approximation
(4). In the general unidenti4able case the set of optimal points forms a manifold S⊂ S(a)
with dimension 16NS6Na. In the above SDOF example NS =1.

The second condition for validity of Equation (4) is having a su>ciently large number
of data N , or equivalently a su>ciently large exponent NJ in Equation (1). This is needed
in order to guarantee that p(a |DN ;MP) decays rapidly in all directions around any optimal
point. In an identi4able case, this condition ensures that the posterior PDF is concentrated in
a number of disjoint regions, each corresponding to the close neighbourhood of an optimal
point. If the decay of p(a |DN ;MP) is not su>ciently rapid, the neighbourhoods of signif-
icant probability corresponding to diPerent optimal points may be overlapping. In addition,
rapid decay of p(a |DN ;MP) ensures that the assumed Gaussian approximation is su>ciently
accurate in the neighbourhood of each optimal point where probabilities are signi4cant. Slow
decay in certain directions implies that the PDF is concentrated in the close neighbourhood of
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a manifold in the parameter space, denoted as earlier by S, extending along the directions of
slow decay. The dimension of the manifold NS, where 16NS6Na, is equal to the number
of directions of slow decay. The points on this manifold, other than the optimal points, have
corresponding values of J (a) slightly larger than the global minimum value �̂2 and, therefore,
have signi4cant probability without necessarily belonging in the close neighbourhood of an
optimal point. In this case the 4nite number of optimal points does not su>ce to describe
the posterior PDFs of the parameters and the predictive response. This case, although be-
ing classi4ed as identi4able according to the de4nitions in Reference [2], appears to have
many similarities to an unidenti4able case, and from a practical standpoint is better classi-
4ed as ‘almost’ unidenti4able with the points on the manifold behaving as ‘almost’ optimal
points.
The above discussion leads to a new stricter de4nition for identi4ability, to which we will

refer to as system identi+ability of order R, where R¿0.

De+nition. The model parameters a are said to be system identi+able of order R¿0 for
the class MP and for given data DN if for any optimal parameter â, i.e. for any value â such
that: J (â)= mina∈S(a) J (a), the following condition is satis4ed:

min
16i6Na

�i(AN (â))¿R¿0 (6)

where AN (â) is the matrix appearing in Equation (4), namely the Hessian matrix of the
function g(a)=NJ ln J (a) evaluated at â, and �i(AN (â)), i=1; : : : ; Na are the eigenvalues of
this matrix.

The above de4nition ensures that the set of optimal points is discrete because it requires
the Hessian of J (a) to be a positive de4nite matrix as can be seen from de4nition (6).
Furthermore, assuming a slowly varying prior distribution, it ensures that the curvature of
the function −lnp(a |DN ;MP) calculated in any direction and at any of the optimal points
is larger than R¿0. This guarantees that if one moves away from any optimal point by a
distance x in any direction, the PDF will decay faster than exp(−Rx2=2). Let us introduce a
threshold value �, where 0¡�¡1, such that only points with normalized (with respect to the
global maximum) PDF values larger than � be considered as having signi4cant probability. An
alternative de4nition for identi4ability (involving two parameters r and �) is: ‘The parameter
vector a is said to be identi4able if the neighbourhood of signi4cant probabilities (speci4ed by
�) around any optimal point â is contained within a sphere of radius r centered at â’. The latter
de4nition seems more natural but involves the speci4cation of two parameters. By choosing
R so that �= exp(−Rr2=2) the two de4nitions become equivalent. The latter observation is
useful for selecting the desired value for the parameter R. Clearly, the larger R the stricter
the de4nition of identi4ability becomes. It must be noted that system identi4ability of the
parameters a according to the de4nition in Reference [2] corresponds to system identi4ability
of order R=0 under the new de4nition.

2.3. Unidenti+able cases

Based on this new de4nition, unidenti4ability receives a less restrictive interpretation. The
strict de4nition of unidenti4ability in Reference [2] corresponds to the particular case of
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unidenti4ability of order R=0. In this case at least one of the eigenvalues �i(AN (â)) is
zero. Therefore, there exist one or more directions along which J (a) remains perfectly Qat
as one moves away from an optimal point, which implies the existence of a non-discrete
(in4nite) set of optimal solutions. Unidenti4ability of order R¿0 means that there exists a
non-empty set of eigenvalues being less or equal to R. This implies either a non-discrete
(in4nite) set of optimal solutions (when one or more of these eigenvalues are equal to zero),
or a 4nite number of optimal solutions but with unsatisfactory decay rate. In an unidenti4able
case of order R, the region of signi4cant probabilities is contained in the neighbourhood of
a manifold S, with dimension NS determined by the number of the eigenvalues �i(AN (â))
which satisfy the condition �i(AN (â))6R. Here, the region of signi4cant probabilities and the
neighbourhood of the manifold are assumed to be speci4ed as earlier through the parameters �
and r, respectively. Thus, the region of signi4cant probability refers to points with normalized
PDF values larger than �, and the neighbourhood of the manifold refers to the points of the
parameter space which lie at distance less or equal to r from some point on the manifold,
where �= exp(−Rr2=2). Clearly in an unidenti4able case 16NS6Na. Note that the parameter
�, used to specify the region of points with signi4cant probability, can be also used to de4ne
the boundaries of S. That is, S extends around the optimal points in the directions along
which J (a) is Qat or almost Qat and until the value of J (a) reduces to the level where
the corresponding normalized probabilities become less than �. Finally, note that S may be
disconnected, that is, it may consist of several disjoint regions each containing one or more
optimal points.
One can extend the concept of the manifold to identi4able cases by considering in this

case the manifold to be the discrete set of optimal points. Clearly, in this degenerate case the
dimension of the manifold is NS =0. Based on this generalized interpretation of the manifold
S, one can state that always, in both identi4able and unidenti4able cases, the posterior PDF
of the parameters is concentrated in the neighbourhood of the manifold S. Note that here,
and throughout the remaining of this paper unless explicitly otherwise mentioned, the terms
identi4ability and unidenti4ability are used in the context of the new de4nition introduced
above, that is, assuming a chosen value for R.
It follows from the above discussion that the distinctive diPerence between identi4able and

unidenti4able cases lies in the dimension of the corresponding manifold. In an identi4able
case the manifold S has dimension zero and can be expressed as the 4nite set of optimal
values S= {â(k); k =1; : : : ; K}. This allows for the model updating problem to be reduced to
4nding the 4nite number of optimal points comprising S. References [2; 5] provide the tools
to resolve this problem. On the other hand, in the unidenti4able case the dimension of the
manifold S is NS¿1; this makes the model updating problem much more complicated since
all the points on the manifold, an in4nite non-discrete set of points in this case, have signi4cant
probabilities and should be accounted for when attempting an approximate representation of
the posterior PDF of the parameters.

2.4. Treatment of unidenti+able cases

In the absence of any analytical solutions, the calculation and meaningful representation of S
can be achieved by generating a 4nite set of points A= {a(l); l=1; : : : ; L} on the manifold.
The posterior PDF of the uncertain model parameters can then be approximated by a weighted
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sum of Dirac delta functions centered at these points [6] as follows:

p(a |DN ;MP) ≈
L∑

l=1
wl�(a − a(l)) (7)

where the weightings wl represent the relative volume of the PDF in the neighbourhood of
each point a(l). Using the theorem of total probability, the posterior predictive response can be
approximated by the weighted sum of the predictive responses of the models with parameters
in the set A, using the same weightings wl. It was shown in Reference [6] that the coe>cients
wl are given by

wl = c2J (a(l))−NJ �(a(l))|BN (a(l))|−1=2I(a(l)) (8)

where c2 is a normalizing constant such that the sum of all wl’s is equal to unity. The next
four factors in the right-hand side of Equation (8) are in the order they appear proportional to:
(i) the relative value of the posterior PDF at point a(l), assuming non-informative (uniform)
prior, (ii) the value of the prior PDF at point a(l), (iii) the thickness of the manifold, expressed
as the relative volume of the PDF in the neighbourhood of a(l) in the space perpendicular to
the manifold, and (iv) a spacing factor which reQects the relative tributary area of the manifold
corresponding to the point a(l). The matrix BN (a(l)) appearing in the thickness factor denotes
the restriction of AN (a(l)) in the (Na − NS)-dimensional subspace which is perpendicular to
the manifold S at the point a(l). It can be shown that the thickness weighting factor can be
calculated according to

∣
∣BN (a(l))

∣
∣−1=2

=
Na∏

i=NS+1
�(l)

−1=2

i (9)

where �(l)i ; l=1; : : : ; Na, are the eigenvalues of AN (a(l)) assumed in an ascending order. Thus,
the thickness weighting factor is equal to the inverse square root of the product of all eigen-
values of AN (a(l)) that are larger than R.
The spacing factor I(a(l)) accounts for the non-uniform distribution of the points a(l) on

the manifold. In the case of a one-dimensional manifold the spacing factor can be easily
established as being proportional to the average distance between the point a(l) and its two
immediate neighbouring points (one on each side). However, as one moves to manifolds of
dimension two or higher, one faces a di>culty in de4ning the concept of neighbouring points
and in assigning an algorithm for calculating the spacing coe>cient.
In Reference [6] an algorithm was presented for the calculation of a representative set of

points A. This algorithm was based on a series of constrained minimizations over a grid
of Na-dimensional cubes which is self-expanding along the directions of the manifold. The
adaptive expansion of this grid allows for only a small region of the total parameter space
containing the manifold to be explored, thus making it computationally e>cient. One of the
di>culties encountered by that algorithm is in the calculation of the weighting coe>cients
wl corresponding to the various points a(l) ∈A. In particular, this algorithm generates a grid
of points which are not uniformly distributed and faces the aforementioned di>culty of cal-
culating the spacing coe>cient I(a(l)) when dealing with manifolds of dimension NS¿1.
This di>culty severely limits the applicability of the algorithm to the case of one-dimension
manifolds (NS =1). Furthermore, the e>ciency of the algorithm is not fully optimized as the
search for points on the manifold is performed in all directions. That is, the algorithm does
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not take full advantage of the knowledge that the dimension of the manifold is usually much
smaller than the dimension of the parameter space in which it lies.

3. TANGENTIAL-PROJECTION (TP) ALGORITHM FOR MANIFOLD
REPRESENTATION

Herein we present a new algorithm for generating a representative set of points A for the
manifold. The proposed algorithm builds the set A in an adaptive expansive manner. The
points in A are calculated as being the projections on the manifold of appropriately generated
grid points lying in diPerent tangential subspaces of the manifold. Therefore, this algorithm
is referred to as the tangential-projection (TP) algorithm. The TP algorithm has the follow-
ing properties: (i) it is computationally more e>cient than the algorithm in Reference [6],
(ii) it produces a more uniform grid of points, (iii) it allows for a straightforward computation
of the weightings wl, and (iv) it can be easily generalized to manifolds of any dimension.
The algorithm has a structured methodology for determining an appropriate unique set of
immediate neighbours for each point a(l). Once this set of neighbours is determined one can
easily proceed with the calculation of the corresponding tributary area and the corresponding
spacing coe>cient.
Next, we present an overview of the steps of the TP algorithm for calculating the represen-

tative set A. The algorithm assumes that a selection of some controlling parameter values is
made at the beginning. In particular, one must select the value of the parameter � specifying
the threshold of signi4cant probabilities, a value R for the desired order of identi4ability, and
a value for a parameter Sr which determines the approximate distance between neighbouring
points in the generated set A. The value of Sr is usually selected to be of the order of the
maximum ‘thickness’ r of the manifold which is determined as r=(−2 log(�)=R)1=2.
The 4rst point a(1) ∈A is calculated using an unconstrained minimization of the function

J (a). Once a(1) is found, the dimension NS of the manifold S is established by solving the
eigenvalue problem for AN (a(l))=∇2g(a(1)); NS is equal to the number of eigenvalues which
are smaller or equal to R; the eigenvectors corresponding to these eigenvalues span a subspace
tangential to the manifold at the point a(1).
In the following discussion we will assume for simplicity that NS =2. This relatively

simple case is selected here because it allows for a clear geometric interpretation of the
steps involved, especially if one considers a parameter space of dimension Na =3; in this
case one can visualize the manifold as a two-dimensional surface in the three-dimensional
parameter space. We did not choose to present the even simpler case NS =1 because in that
case some of the fundamental di>culties faced in higher-dimensional cases are not raised;
for example, in the case of a one-dimensional manifold it is straightforward to de4ne the
neighbours of any point a(l) as the points to the left and right of a(l), but the extension of this
neighbouring concept in higher dimensions is not trivial. We have chosen to present the case
NS =2 because it is relatively simple to illustrate and at the same time it can be extended to
higher-dimensional cases without too much di>culty.
One of the basic ideas of the TP algorithm is to generate the points a(l) ∈A in a speci4c

strictly structured manner. Two fundamental concepts are used towards this end: the 4rst
concept is that of parent–child point relationship, and the second is that of neighbouring
points. These concepts are discussed in detail next in Sections 3.1 and 3.2, respectively. In
Section 3.3 these concepts are illustrated with an example.
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3.1. Parent–child point relationship

The TP algorithm consists of a series of point generation (or point expansion) steps. During
the lth step, points are generated around point a(l); the points generated during this step are
referred to as the child-points of a(l), while a(l) is referred to as the parent-point of the newly
generated points. Thus, for each point a(l), except for point a(1), there exists a unique parent-
point which has generated it. Therefore, one can de4ne a ‘parent’ function P mapping the set
{2; : : : ; L} within the set {1; : : : ; L − 1} in such a way that the relationship ‘a(l) is parent of
a(s)’ can be mathematically expressed as P(s)= l. Note the fact that this mapping is within,
and generally not on, the set {1; : : : ; L−1} which implies that there may exist points in the set
{2; : : : ; L−1} which are not parents of any point. Furthermore, the function P is not invertible,
implying that some point may be the parent of several diPerent points. Although we cannot
de4ne P−1 as a function, we can de4ne it as an inverse image, that is, for l∈{1; : : : ; L− 1},
we de4ne the set P−1({l}) as follows:

P−1({l}) = {s: 26s6L;P(s)= l}
= {sl1; sl2; : : : ; slnl} (10)

where nl is the total number of child-points corresponding to point a(l). Thus, P−1({l})
de4nes the set of all child points for point a(l). If point a(l) does not generate any points then
P−1({l}) is an empty set. In our particular algorithm, as will be seen later in this section,
each point may be the parent of zero up to 2×NS =4 child-points, that is, 06nl64. The
order of generation of points is reQected by their numbering; for example, point a(l) is the lth
generated point in the set A. Therefore, it follows that P(l)¡l, for any point l∈{2; : : : ; L}.
There are a few rules mandating the order of point generation:

1. The 4rst rule is that a point a(l) can become a parent if and only if it has a corresponding
relative PDF value (with respect to the largest value encountered so far) larger than the
threshold value �. This rule ensures that the expansion of the manifold does not continue
beyond points with relatively insigni4cant probability values. In particular, a point a(l)

with relative PDF value less than �, lies just outside the boundary of the manifold; such
points are hereafter referred to as ‘boundary’ points, or ‘inactive’ points because they do
not generate child points. On the contrary, points with relative PDF value larger than �,
belong to the interior of the manifold and are hereafter referred to as ‘interior’ or ‘active’
points.

2. The second rule is that the lth point, assuming it is active, may become a parent only
after all other active points a(k), with k¡l, have generated all their child-points. A corol-
lary of this rule is that all child-points generated by a single parent-point are numbered
consecutively.

3. The last rule refers to the calculation and the numbering of the child-points generated by
a speci4c (active) parent-point a(l). This is described in detail in the following subsection.

3.1.1. Generation of child points of a(l). Let �(l)1 and �(l)2 denote the lowest two eigenval-
ues of ∇2g(a(l)), assumed in ascending order, and let �(l);1 and �(l);2, respectively, denote
the corresponding eigenvectors, normalized so that their length is equal to one. In order to

Copyright ? 2002 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:791–812



800 L. S. KATAFYGIOTIS AND H.-F. LAM

uniquely specify these vectors, that is, in order to uniquely select one out of the two possible
(opposite to one another) solutions, an additional condition is imposed: the inner products
〈�(l); i ;�(s); i〉; i=1; 2; s=P(l), are required to be positive. Note that the choice of positive
direction for the eigenvectors �(1);1;�(1);2 corresponding to point a(1) is arbitrary, but once
selected, it determines the positive direction of the eigenvectors of all follow-up generated
points. Clearly the eigenvectors �(l);1;�(l);2 span a plane tangential to the manifold at point
a(l). Using these eigenvectors, an ordered set B(l) is generated, comprised of four points within
the aforementioned tangential plane, as follows:

B(l) = {a(l) −Sr�(l);1; a(l) + Sr�(l);1; a(l) −Sr�(l);2; a(l) + Sr�(l);2} (11)

Once the set B(l) is determined, then the 4nal step of the child-point generation process for
a(l) can be performed. Starting from each point b(l); i ∈B(l); i=1; : : : ; 4 (in the given order),
and under some conditions based on the concept of neighbouring points discussed later in
Section 3.2.2, minimization of J (a) is performed within the (Na − 2)-dimensional subspace
which contains b(l); i and is orthogonal to �(l);1 and �(l);2; this is achieved by performing
a minimization in the space spanned by the eigenvectors �(l); i ; i=3; : : : ; Na. The point at
which the minimum is reached corresponds to a new child-point for a(l) and is assigned
the next available point ordering number. Obviously, the maximum number of child-points
generated by this process is four, and this happens if all points b(l); i ; i=1; : : : ; 4, satisfy the
neighbourhood conditions discussed later in Section 3.2.2.

3.2. Neighbouring point relationship

Here we discuss the second fundamental concept of the proposed algorithm, namely the
concept of neighbouring points. This relationship is the controlling factor for deciding whether
or not to perform the minimization step starting from point b(l); i described in the previous
section.
According to the neighbouring concept, each point a(l) ∈A may have a maximum of

2×NS =4 neighbouring points in A; if a(l) is an interior (active) point of the manifold
then the number of neighbouring points is equal to four, while if it is a boundary (inactive)
point then this number is less than four. Each of the neighbouring points of a(l) is located on
the manifold in approximately one of the following four directions relative to a(l): the negative
or positive major direction (speci4ed by �(l);1) or the negative or positive minor direction of
the manifold (speci4ed by �(l);2). To each point a(l) we assign a uniquely determined ordered
set C(l) with four elements containing all its neighbouring points. The ordering of these points
in the set C(l) is chosen to follow a similar convention as the one adopted for the set B(l) in
Equation (11). For example, the 4rst point in the set C(l) is the neighbouring point located
approximately along the negative major direction of the manifold relative to a(l); if there is
no such point (as may happen if a(l) lies on the manifold boundary) then the 4rst position in
the set C(l) is left empty.

The set C(l) plays a signi4cant role in the proposed algorithm because of the following two
reasons: (i) it is used to determine the spacing weighting factor I(a(l)) in Equation (8); this
factor is taken to be equal to the total area enclosed by the set of the neighbouring points
of a(l); and (ii) it is used to determine which particular elements of the aforementioned set
B(l) can lead to the generation of new child-points; thus, C(l) directly controls the directions
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of point expansion around a(l) as is explained in further detail in Section 3.2.2. First, in the
next section we discuss the rules for establishing C(l).

3.2.1. Continual updating of C(l). An important feature of the proposed algorithm is that
the two important functions of point generation and neighbourhood establishment are done in
parallel. After the generation of each new point a(s), and before proceeding with the generation
of any next point, the algorithm e>ciently updates all sets C(l); l¡s, being aPected by the
generation of this new point. Thus, the sets C(l) are kept fully updated at all times so as to
fully reQect all neighbouring relationships that can be established up to the given time.
The continual updating of the sets C(l) is based on a few well-de4ned rules which follow

from some basic properties that the neighbouring relationship is required to have. The 4rst
property is that of symmetry, which can be stated mathematically as follows:

a(l) ∼ a(s) ⇔ a(s) ∼ a(l) (12)

where a∼ b denotes that point a is a neighbour of point b. This property can also be rewritten
as

l∈C(s) ⇔ s∈C(l) (13)

Furthermore, knowing the position of l in the ordered set C(s) helps us to uniquely determine
the position of s in the set C(l). For example, based on the aforementioned ordering scheme,
it easily follows that if l is the 4rst (third) element of C(s) then s will be the third (4rst)
element of C(l).

The second ‘neighbouring’ property can be written as

P(s)= l⇒ a(l) ∼ a(s) (14)

or equivalently,

P(s)= l⇒ l∈C(s) and s∈C(l) (15)

In Equation (15) the position which l occupies in the ordered set C(s) uniquely determines the
position of s in the set C(l). Speci4cally, depending on whether l occupies the 1st, 2nd, 3rd
or 4th position in C(s); l occupies the 2nd, 1st, 4th and 3rd position in C(l), respectively. The
above equations state that a parent–child relationship between two points implies that these
point are neighbours of one another (while the reverse is obviously not necessarily true). It
follows as a corollary that the set P−1({l}) with l¿2 has a maximum of three elements;
that is, a(l); l¿2, generates no more than three child-points. The proof follows easily from
the fact that C(l), which contains a total of the most four elements, must de4nitely contain
the ordering members of the parent point and all the child-points of a(l). The above case of
parent–child neighbouring relationship is also referred to as a ‘4rst-generation’ neighbouring
relationship.
The last property refers to the so-called ‘second-generation’ neighbouring relationship. It

can be shown that in our case this is the only alternative possibility for a neighbouring
relationship between two points to exist. Speci4cally, it can be shown that

a(s) ∼ a(l); s¿l; P(s) �= l⇒P(l)=P2(s) (16)
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Figure 1. Numbering system for point generation.

where P2(s)=P(P(s)). Equation (16) states that if two points a(l) and a(s) with s¿l are
neighbouring points, without having a 4rst-generation relationship, then the grandparent of (the
younger) sth point is the parent of the (older) lth point. However, it must be noted that the
condition P(l)=P2(s) does not necessarily imply that a(s) ∼ a(l). Speci4cally, it can be shown
that a newly generated point a(s) may have a second-generation relationship only with up to
two out of the four points a(l) satisfying the above condition, i.e. out of the points satisfying
l∈P−1{P2(s)}. An additional set of rules are used to establish such point(s) a(l) and the
position of l and s in the sets C(s) and Cl, respectively. This set of rules are straightforward
and are not listed here because of space limitations.

3.2.2. Neighbouring condition for child-generation. The status of the set C(l) at the time of
point expansions around a(l) determines how many and, more speci4cally, which child points
will be generated by a(l). In particular, the condition for performing a minimization starting
from point b(l); i ∈B(l) depends on whether the corresponding ith element of C(l) has already
been assigned a value at the time when the point expansion step around a(l) takes places.
If the ith place in the set C(l) is still empty at that time, this implies that no neighbouring
point has yet been established in the corresponding direction and thus the minimization step
must be performed in order to establish such a neighbouring point. On the contrary, if the ith
place in the set C(l) has been assigned an integer value s, this implies that the point a(s) has
already been established as the neighbouring point of a(l) corresponding to this ith direction
and therefore, minimization starting from b(l); i does not need to be performed.

3.3. Schematic illustration of TP algorithm’s concepts

Various points in the earlier sections become clearer with the help of Figure 1 and Table I.
Figure 1 illustrates the numbering of the 4rst 25 points of a two-dimensional manifold.
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Table I. Sets C(l) after the 4fth point-generation step.

Point

1 2 3 4 5 6 7 8 9 10 11 12 13

X− 2(1) 6(2) 1(1) 7(2) 8(2) 3(3) 4(3) 5(3)

X+ 3(1) 1(1) 9(3) 10(3) 11(3) 2(2) 4(2) 5(2)

C(l) Y− 4(1) 7(2) 10(3) 12(4) 1(1) 2(2) 3(3) 5(5)

Y+ 5(1) 8(2) 11(3) 1(1) 13(5) 2(2) 3(3) 4(4)

Here, x and y correspond to the major and minor direction of the manifold. Table I depicts
the updated neighbouring sets C(l) right after the 4fth point-generation step, i.e. right after
all child-points of point 5 have been generated. The numbers in the superscript denote the
point-generation step during which a particular point was generated and during which the
neighbouring sets were updated.
Starting with point 1, during the 4rst point-generation step points 2, 3, 4 and 5 are generated

sequentially to the left, right, bottom and top of point 1, respectively. Points 2, 3, 4 and 5 are
the child points of point 1, i.e. P−1(1)= {2; 3; 4; 5}. At the end of this 4rst step the updated
neighbouring sets are as follows: C(1) = {2; 3; 4; 5}, C(2) = { ; 1; ; }; C(3) = {1; ; ; }; C(4) =
{ ; ; ; 1} and C(5) = { ; ; 1; }. During the second point-generation step point 2 generates three
child points: 6 to its left, 7 to its bottom and 8 to its top (see Figure 1). Note that no point is
generated to its right as the set C(2) had already its second position 4lled by the number 1, im-
plying that the right neighbour of a(2) already exists and is point a(1). At the end of this second
step the updated neighbouring sets are C(1) = {2; 3; 4; 5}; C(2) = {6; 1; 7; 8}; C(3) = {1; ; ; ; };
C(4) = {7; ; ; 1}; C(5) = {8; ; 1; }; C(6) = { ; 2; ; }; C(7) = { ; 4; ; 2} and C(8) = { ; 5; 2; }. Notice
that the relationships between points 7 and 4 and between 5 and 8 are second-generation
ones. During the third point-generation step, point 3 generates points 9, 10 and 11. Again,
notice that no point is generated to the left of point 3 as the 4rst space in the set C(3)

is already occupied by point 1. Again, the neighbouring sets are updated appropriately. For
example, after this third point-generation step C(4) = {7; 10; ; 1}. Note that the relationships
between points 4 and 7 and 4 and 10 are both second-generation ones. As C(4) has only one
empty space at the third position, during the next (fourth) point-generation step only point 12
is generated at the bottom of point 4. The procedure continues in a similar manner as shown
in Figure 1 and Table I.

3.4. Overview of tangential-projection algorithm

Having described the basic properties of the point generating process and of the process for
continual updating of the neighbouring relationships, the proposed algorithm can be summa-
rized as follows:
The algorithm consists of a set of point-generation steps. During the lth point-generation

step the algorithm does the following:

1. It checks whether point a(l) is an interior (active) or a boundary (inactive) point. If
it is a boundary point, the algorithm skips the next two steps and returns to this step
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Figure 2. Bridge model.

for the next (l + 1)th point-generation step. Otherwise, the following steps 2 and 3 are
performed.

2. It solves the eigenvalue problem of ∇2g(a(l)) and establishes the set B(l) according to
Equation (11). Next, it performs the appropriate (Na−2)-dimensional minimizations starting
at the eligible (based on the current state of the set C(l)) points of B(l) to obtain sequentially
the child-points of a(l).

3. For each generated child-point all possible new 4rst- and second-generation neighbourhood
relationships are established and the corresponding sets C(l) for all aPected points are
updated.

The algorithm continues until all point expansions have reached the manifold boundary and
there are no more active points to be considered. In order to account for the possibility
of the manifold being disconnected, the algorithm does not stop when the above described
process 4nishes. Instead, the point with maximum probability is identi4ed from the current
set of points, and using the algorithm presented in Reference [3] all output-equivalent points
in the parameter space are located. For each such output-equivalent point we check whether
or not it belongs in the region of the parameter space already explored and having yielded
the current set of points A. If it does not belong in this region, then the algorithm presented
in this section is repeated with this new point as starting point a(1). This procedure allows
for the representation of the manifold by a 4nite set of points, even when the manifold is
disconnected.
Once the 4nal set of points A is established, the corresponding weighting weightings wl

can be calculated according to Equation (8). The spacing coe>cient I(a(l)) is chosen to be
proportional to the total area enclosed by the set of neighbouring points of a(l).

4. NUMERICAL EXAMPLE

The proposed methodology is demonstrated using a numerical example involving a two-
dimensional 10-DOF 4nite element model of a single-span elastically supported bridge as
shown in Figure 2. The bridge is assumed to be subjected to a ground motion given by the
NS 1940 El Centro earthquake record. Only one DOF, the translational DOF at the midspan
C, is assumed to be measured.
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Table II. Representation of diPerent uncertain parameters for models M1 and M2.

Model Translational spring Rotational spring Bending rigidity

Node A Node E Node A Node E

M1 %1kyA %2kyE %3k%A %3k%E %4EI
M2 %1kyA %3kyE %2k%A %4k%E %5EI

The structural parameters for the nominal structure are as follows: translational spring con-
stants kyA =1:1× 107 N=m and kyE =0:9× 107 N=m; rotational spring constants k%A =1:2× 105

N m and k%E =0:85× 105 N m; bending rigidities of elements AB, BC; CD and DE equal to
0:95EI; 1:05EI; 0:9EI and 0:95EI , respectively, where EI =106 Nm2; lumped mass at each
node equal to mA =mE =8× 103 kg, and mB =mC =mD =16× 103 kg. The measurement data
were simulated by adding a 20 per cent white noise to the calculated response of the nominal
structure.
Two models, denoted as M1 and M2, with diPerent degrees of complexity were em-

ployed in the model updating process. Both models are based on the same reference model
with structural parameters as follows: translational spring constants k∗

yA = k∗
yE =107 N=m; ro-

tational spring constants k∗
%A = k∗

%E =105 N m; uniform bending rigidity along the bridge desk
equal to EI∗=106 N m2. Model M1 involves four stiPness scaling parameters (denoted by
%i; i=1; : : : ; 4) allowing for an independent scaling of the translational springs at each end,
a common scaling of the rotational springs at both ends, and a uniform scaling of the deck
rigidity. Model M2 diPers from M1 in that it allows for an independent scaling of the rota-
tional springs at each end, thus involving a total of 4ve stiPness scaling parameters (denoted
by %i; i=1; : : : ; 5). Table II lists the stiPness characteristics of the two models M1 and M2,
as a function of the corresponding %s. Twenty seconds of data with a sampling interval of
St=0:02 were used, i.e. N =1000 points were used in the model updating.
Based on the proposed algorithm, the manifolds for both models are generated. Owing to

the diPerent degree of complexity of the two models, the manifold for M1 is found to be one-
dimensional (circles in Figure 3(a)–3(c)) while that for M2 is found to be two-dimensional
(dots in Figure 3(a)–3(c)). Figure 3(a)–3(c) depict the manifolds plotted in three diPerent
subspaces of the parameter space, referred to as subspace A, B and C. Subspace A is the
subspace (%1; %3; %4) and (%1; %2; %5) for M1 and M2, respectively. Subspace B is the subspace
(%3; %3; %4) and (%2; %4; %5) for M1 and M2, respectively. Subspace C is the subspace (%1,%2,%4)
and (%1; %3; %5) for M1 and M2, respectively. As can be seen from these 4gures, the one-
dimensional manifold of M1 is a subset of the two-dimensional manifold of M2.
It is evident from Figure 3(a) that both the above one-dimensional and the two-dimensional

manifolds are disconnected. Therefore, in both cases, initially only one part of the manifold
was calculated using the above algorithm. Then, starting from the point with the largest
probability, and using the algorithm presented in Reference [3], we were able to 4nd another
output-equivalent point, having equally large probability and not belonging in the already
identi4ed part of the manifold. Restarting from this new point the TP algorithm we were
able to construct the second part of the manifold. It can be seen that the two disconnected
manifold parts exhibit some symmetry as expected. For example, interchanging the values of
%1 and %2 for a point on one part of the manifold of M1 leads to a point on the second
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part of the manifold. Similarly in M2 one may interchange the values of the sets (%1; %2) and
(%3; %4) to obtain a point on the other part of the manifold. A study of the ePect of diPer-
ent sensor locations on the calculated manifold and parameter uncertainties can be found in
Reference [7].
Based on the identi4ed set of points A on the manifold and the associated weightings

calculated using Equation (8), the cumulative probability of all uncertain parameters can be
obtained. Figure 4(a)–4(e) shows the cumulative probability for all uncertain parameters for
both models M1 and M2. Table III summarizes the statistical properties (mean and coe>cient

Figure 3. (a) Manifold in subspace A, (b) manifold in subspace B, and (c) manifold in subspace C.
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Figure 3. (Continued)

Table III. Mean and coe>cient of variation for stiPness parameters.

1-D manifold 2-D manifold

Mean COV Mean COV

kyA 1.0007 0.1003 1.0030 0.1034
kyE 1.0007 0.1003 1.0030 0.1034
k%A 1.1515 0.1751 1.2229 0.6218
k%E 1.1515 0.1751 1.2231 0.6217
EI 0.9620 0.0063 0.9600 0.0093

of variation) of the stiPness parameters % for the two models. Note that in general the uncer-
tainty of %s for the two-dimensional manifold (M2) is higher than that for the one-dimensional
manifold (M1).
Furthermore, the cumulative probability of maximum responses, such as maximum dis-

placements and rotations at diPerent nodes and maximum bending moments at both ends of
the bridge were calculated. Figure 5(a)–5(c) show the cumulative probability of maximum
displacement for nodes A, B and C for both models. Figures 6 and 7 show the cumulative
probability of maximum rotation and bending moment, respectively, at node A. Table IV
summarized the statistical properties (mean and coe>cient of variation) of these maximum
responses for both models. Once again, it is noted that, as with the uncertainty of %s, the
uncertainty of maximum responses obtained from the two-dimensional manifold is higher than
that obtained from the one-dimensional manifold.
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Figure 4. Cumulative probability of % for translational spring at (a) node A, and (b) node E. Cumulative
probability of % for rotational spring at (c) node A and (d) node E. (e) Cumulative probability of %

for bending rigidity of the desk.
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Figure 4. (Continued)

Table IV. Mean and coe>cient of variation for maximum responses.

1-D manifold 2-D manifold

Mean COV Mean COV

Max. disp. at A 0.0115 0.1578 0.0115 0.1600
Max. disp. at B 0.0915 0.0031 0.0915 0.0050
Max. disp. at C 0.0073 0.0072 0.0073 0.0072
Max. rotation at A 0.0098 0.0071 0.0098 0.0123
Max. bending moment at A 20394 0.1750 21527 0.6097

5. CONCLUSION

The general Bayesian statistical framework presented in Reference [2] was extended to treat
general unidenti4able cases. A new algorithm, referred to as the tangential-projection (TP)
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Figure 5. Cumulative probability of maximum displacement at (a) node A,
(b) node B, and (c) node C.
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Figure 6. Cumulative probability of maximum rotation at node A.

Figure 7. Cumulative probability of maximum bending moment at node A.

algorithm, for representation of the manifold of signi4cant probabilities by a 4nite set of points
was presented. This set of points, along with some appropriately calculated weightings, allows
for the quanti4cation of uncertainties of the model parameters and the predictive response. The
TP algorithm is computationally signi4cantly more e>cient than the algorithm in Reference
[6] as it e>ciently builds the representative set of points by restricting the search for these
points along only a small subspace of the parameter space extending only along the directions
of the manifold. Furthermore, the algorithm oPers a nearly uniformly spaced point generation
and overcomes the di>culty encountered by the algorithm in Reference [6] in calculating the
weightings for manifolds of dimension larger than one. The algorithm allows for the treatment
of unidenti4able model updating problems that could not be resolved in the past.
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