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ABSTRACT 

The focus of this paper is Bayesian state and parameter estimation using nonlinear mod-

els. A recently developed method, the particle filter, is studied that is based on stochastic simula-

tion. Unlike the well-known extended Kalman filter, the particle filter is applicable to highly 

nonlinear systems with non-Gaussian uncertainties. Recently developed techniques that improve 

the convergence of the particle filter simulations are introduced and discussed. Comparisons be-

tween the particle filter and the extended Kalman filter are made using several numerical exam-

ples of nonlinear systems. The results indicate that the particle filter provides consistent state and 

parameter estimates for highly nonlinear systems, while the extended Kalman filter does not. 
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1. INTRODUCTION 

1.1 Applications of state estimation in civil engineering 

State estimation is the process of using dynamic data from a system to estimate quantities 

that give a complete description of the state of the system according to some representative 

model of it. State estimation has the potential to be widely applied in civil engineering. For in-

stance, structural health monitoring techniques that detect changes of dynamical properties of 
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structural systems during earthquakes can be cast into a state estimation problem. More gener-

ally, system identification is useful for better understanding the nonlinear behavior of structures 

subject to seismic loading. A state estimation methodology can be used for this purpose. For 

structural control, the ability to estimate system states in real time may help to accomplish an 

efficient control strategy. For performance-based earthquake engineering, state estimation can 

provide crucial information to assess seismic performance of an instrumented building or bridge 

in terms of repair costs, casualities and repair duration (dollars, death and downtime) shortly af-

ter the cessation of strong motion. 

Due to their wide applicability, state estimation and identification methods have been 

studied in civil engineering for various purposes: Beck (1978) used an invariant-embedding filter 

for modal identification; Yun and Shinozuka (1980) used an extended Kalman filter to study 

nonlinear fluid-structure interaction; Hoshiya and Saito (1984) used the extended Kalman filter 

for structural system identification; Lin et al. (1990) developed an identification methodology for 

better understanding of the degrading behavior of structures subject to dynamic loads; Koh and 

See (1994) developed an adaptive filter algorithm that also updates uncertainty estimates; 

Ghanem and Shinozuka (1995) presented several adaptive estimation techniques (e.g. extended 

Kalman filter, recursive least squares, recursive prediction error methods) and verified them us-

ing experimental data (Shinozuka and Ghanem 1995); Glaser (1996) used the Kalman filter to 

identify the time-varying natural frequency and damping of a liquefied soil to get insight into the 

liquefaction phenomenon; Sato and Qi (1998) derived an adaptive H∞ filter and applied it to 

time-varying linear and nonlinear structural systems in which displacements and velocities of the 

floors are measured; Smyth et al. (1999) formulated an adaptive least squares algorithm for iden-
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tifying multi-degree of freedom nonlinear hysteretic systems for the purpose of control and 

monitoring. 

1.2 Development of Bayesian state-estimation algorithms 

Among state estimation methodologies, those founded on the Bayesian framework are 

powerful because: (1) they are rigorously based on the probability axioms and therefore preserve 

information; and (2) they give the probability density function (PDF) of the system state condi-

tioned on the available information, which may then be used for any probability-based structural 

health monitoring, system identification, reliability assessment and control techniques. With the 

PDF available, we can not only estimate the state but also give a description of the associated 

uncertainties. For the Bayesian state-estimation algorithms, Kalman formulated the well-known 

Kalman filter (KF) (Kalman 1960; Kalman and Bucy 1961) for linear systems with Gaussian un-

certainties. Later, KF was modified to give the extended Kalman filter (EKF) (Jazwinski 1970) 

to accommodate lightly nonlinear systems, and this is basically the dominant Bayesian state-

estimation algorithm for nonlinear systems and non-Gaussian uncertainties for the last 30 years. 

Although EKF has been widely used, it is only reliable for systems that are almost linear 

on the time scale of the updating intervals (Julier et al. 2000; Wan and van der Merwe 2000). 

However, civil-engineering systems are often highly nonlinear when subject to severe loading 

events, in this case, the applicability of the KF and EKF is often questionable. These older tech-

niques have been used by civil engineering researchers for decades (Beck 1978; Yun and Shino-

zuka 1980; Hoshiya and Saito 1984; Koh and See 1994) although their applicability for nonlinear 

systems and non-Gaussian uncertainties is seldom verified either empirically or theoretically. 

Several important breakthroughs (Alspach and Sorenson 1972; Gordon et al. 1993; Kita-

gawa 1996; Doucet et al. 2000; Julier et al. 2000) have produced Bayesian state-estimation algo-
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rithms that are applicable to highly nonlinear systems. State estimation for general nonlinear dy-

namical systems is still an active research area, and novel techniques (e.g.: van der Merwe et al. 

2000; van der Merwe and Wan 2003) can be found in the most recent signal-processing litera-

ture. Although these breakthroughs have had significant impact in the area of signal processing, 

they are rarely seen in civil engineering. Exceptions include Yoshida and Sato (2002) and Maru-

yama and Hoshiya (2003), who have implemented an improved version of Kitagawa’s approach 

for system identification and damage detection. 

1.3 Scope of this paper 

In this paper, we introduce some recent developments in Bayesian state estimation that 

use stochastic simulation. The technique called particle filter (PF) is presented and discussed. 

These simulation techniques have the following advantages: (1) they are applicable to highly 

nonlinear systems with non-Gaussian uncertainties; (2) they are not limited to the first two mo-

ments as in the KF and EKF; and (3) as the sample size approaches infinity, the resulting esti-

mates of the state, or any function of the state, converge to their expected values conditional on 

the dynamic data up to the present time. However, the simulation is usually computationally ex-

pensive and sometimes the state estimates can be inaccurate due to insufficient samples. We in-

troduce several developments more recent than Kitagawa (1996) that address the afore-

mentioned difficulties and present new techniques that improve convergence. The performance 

of the EKF and PF methods is compared through several numerical examples. 

This paper has the following structure: In Section 2, we define the general problem of 

Bayesian state estimation for nonlinear dynamical systems. In Section 3, we review the KF and 

EKF algorithms. In Section 4, we introduce importance-sampling filter techniques, including the 
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particle filter. In Section 5, several numerical examples are presented to compare the older and 

newer techniques. 

2. STATE ESTIMATION 

Consider the following discrete-time state-space model of a dynamical system: 

1 1 1( , , )k k k k kx f x u w− − −=  ( , , ) 1, 2...k k k k ky h x u v k T= =  (1)  

The two equations in (1) are called, from left to right, state transition (or evolution) and observa-

tion (or output) equations, respectively. In this equation, n
kx R∈ , p

ku R∈  and q
ky R∈  are the 

system state, input (known excitation) and output at time k , respectively; l
kw R∈  and m

kv R∈  

are introduced to account for unknown disturbances, model errors and measurement noise; kf  is 

the prescribed state transition function at time k ; and kh  is the prescribed observation function at 

time k . The values of the variables kx , ky , kw  and kv  are uncertain and so are modeled as ran-

dom variables, while ku  is considered to be a known excitation.  

For each time k , the dynamical system input ku  and output ˆky are measured. (In order to 

avoid confusion, we denote the observed output value by ˆky ). We denote 1 2ˆ ˆ ˆ{ , ,..., }ky y y  and 

1 2{ , ,..., }ku u u  by k̂Y  and kU , respectively. Our goal is to sequentially evaluate the conditional 

probability density function (PDF) ˆ( | )k kp x Y  for the state kx  at every time k , i.e. to sequentially 

update this conditional PDF using the observed system input and output up to the current time, 

based on prescribed probabilistic models for kw  and kv . From this conditional PDF, some im-

portant features of the state, such as the conditional expectation ˆ( | )k kE x Y  and conditional co-

variance matrix ˆ( | )k kCov x Y , can be estimated. Note that the conditioning of every PDF on kU is 

left implicit. 
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The basic equations for updating 1 1
ˆ( | )k kp x Y− −  to ˆ( | )k kp x Y  are the predictor and updater 

(or corrector) equations that follow from the Theorem of Total Probability and Bayes Theorem, 

respectively: 

1 1 1 1 1

1 1

11

ˆ ˆ( | ) ( | ) ( | )

ˆ ˆˆ ˆ( | ) ( | ) ( | ) ( | )ˆ( | ) ˆˆ ˆˆ ( | )( | ) ( | )

k k k k k k k

k k k k k k k k
k k

k kk k k k k

p x Y p x x p x Y dx

p y x p x Y p y x p x Yp x Y
p y Yp y x p x Y dx

− − − − −

− −

−−

=

= =

∫

∫
 (2) 

where 1k̂Y −  is dropped in 1( | )k kp x x −  and ˆ( | )k kp y x  because the models for the state transition 

and observation PDFs make it irrelevant. The main challenge in Bayesian state estimation for 

nonlinear systems is that these basic equations cannot be readily evaluated because they involve 

high-dimensional integrations.  

3. KALMAN FILTER 

When kf  and kh  in (1) are both linear in ku , kx , kw  and kv , i.e. 

( , , ) ( , , )k k k k k k k k k k k k k k k k k k k kf x u w A x B u G w h x u v C x D u H v= + + = + +  (3) 

and kw  and kv  are zero-mean independent Gaussian random variables with identity covariance 

matrices, then the conditional PDF is also Gaussian and can be updated analytically. Further-

more, it is sufficient to update the first two moments because they completely specify this condi-

tional PDF. The updating algorithm is the well-known Kalman filter (KF). It comprises two 

steps, the predictor (uncertainty propagation) and updater (estimation) steps. 

In the uncertainty propagation step, the goal is to compute 1
ˆ( , | )k k kp x y Y −  from 

1 1
ˆ( | )k kp x Y− − . First, 1

ˆ( | )k kp x Y −  is computed based on 1 1
ˆ( | )k kp x Y− −  using the following moment 

equations: 
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| 1 1 1 1| 1 1 1

| 1 1 1 1| 1 1 1 1

ˆ( | )
ˆ( | )

k k k k k k k k k

T T
k k k k k k k k k k

x E x Y A x B u

P Cov x Y A P A G G
− − − − − − −

− − − − − − − −

≡ = +

≡ = +
 (4) 

Note that the values 0|0x  and 0|0P  have to be given prior to the initialization of the algorithm. 

Second, 1
ˆ( | )k kp y Y −  is computed based on 1

ˆ( | )k kp x Y −  and ku  using the following moment equa-

tions: 

| 1 1 | 1

| 1 1 | 1

ˆ( | )
ˆ( | )

k k k k k k k k k

y T T
k k k k k k k k k k

y E y Y C x D u

P Cov y Y C P C H H
− − −

− − −

≡ = +

≡ = +
 (5) 

and finally, the conditional covariance between kx  and ky  is the n q×  matrix computed as fol-

lows: 

| 1 1 | 1
ˆ( , | )xy T

k k k k k k k kP Cov x y Y P C− − −≡ =  (6) 

This completes the computation of all the moments needed to specify the Gaussian PDF 

1
ˆ( , | )k k kp x y Y − . 

In the estimation step, ˆ( | )k kp x Y  is updated based on (2): 

( ) ( ) ( ) ( ) ( ) ( )
1 1

| 1 | 1 | 1

1

1

1 1ˆ ˆ
2 2

ˆˆ( | ) ( | )ˆ( | ) ˆˆ( | )
TT T

k k k k k k k k k k k k k k k k k k k k

k k k k
k k

k k

y C x D u H H y C x D u x x P x x

p y x p x Yp x Y
p y Y

const e e
− −

− − −

−

−

− ⎡ ⎤ − ⎡ ⎤− − − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

= ⋅ ⋅

 (7) 

where const  is a quantity not depending on kx . Because ˆ( | )k kp x Y  is Gaussian, differentiating 

ˆ( | )k kp x Y  with respect to kx  and solving for zero, we obtain |k kx ; on the other hand, |k kP  is equal 

to the negative of the inverse of the Hessian of ˆlog ( | )k kp x Y⎡ ⎤⎣ ⎦ : 

( ) ( ) ( )

( )

11 1

| | 1 | 1 | 1 | 1

111
| | 1

ˆT T T T
k k k k k k k k k k k k k k k k k k

T T
k k k k k k k k

x x I P C H H C P C H H y y

P P C H H C

−− −

− − − −

−−−
−

⎡ ⎤= + + ⋅ ⋅ −⎢ ⎥⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

 (8) 
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Making use of the following lemmas 

( ) ( ) ( ) ( )1 11 1 1 1 T T TI PQ P P I QP A VC V A AV C V AV V A
− −− − − −+ = + + = − +  (9) 

where P  and Q  are conformable matrices, A  and C  are positive definite, we conclude with the 

following equations for the estimation step: 

1
| | 1 | 1 | 1 | 1

1
| | 1 | 1 | 1 | 1

ˆ( ) ( )

( )

xy y
k k k k k k k k k k k

xy y xy T
k k k k k k k k k k

x x P P y y

P P P P P

−
− − − −

−
− − − −

= + ⋅ ⋅ −

= − ⋅ ⋅
 (10) 

3.1 Extended Kalman filter 

Many dynamical systems exhibit nonlinear behavior, and the direct use of KF is prohib-

ited. However, if kf  and kh  are only slightly nonlinear, an approximation for KF can be derived 

by linearizing the uncertainty propagation and estimation steps. The resulting filter is the well-

known extended Kalman filter (EKF). To explain the linearization (LN) technique for the uncer-

tainty propagation step, we consider the following general uncertainty propagation problem: 

)(XfY =  (11) 

where nX R∈  and mY R∈  are uncertain vectors. Using Taylor series expansion around 

X EX= , we have 

( ) ( ) ( )xf X f EX f X EX HOT= +∇ ⋅ − +  (12) 

where x f∇  is the Jacobian matrix evaluated at x EX= ; HOT  denotes the higher order terms. 

As a result, the first two moments of Y are 

( )EY f EX HOT= +  (13) 

and 

( ) ( ) ( ) ( )T
x xCov Y f Cov X f HOT= ∇ ⋅ ⋅ ∇ +  (14) 
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Under the assumption that ( )f x  is nearly linear near x EX= , all higher order terms vanish; 

therefore, EY  and ( )Cov Y  are approximated by 

( ) ( ) ( ) ( ) ( )T
LN LN x xEY f EX Cov Y f Cov X f= = ∇ ⋅ ⋅ ∇  (15) 

where LNEY  and ( )LNCov Y  denote the approximations of the LN technique for EY  and ( )Cov Y . 

The approximations LNEY  and ( )LNCov Y  are accurate estimates of EY  and ( )Cov Y  if ( )f x  is 

almost linear on the support region of the PDF of X  and become exact when ( )f x  is linear in 

x . On the other hand, the approximations are poor if ( )f x  is highly nonlinear on the support 

region of the PDF of X . 

For the uncertainty propagation step in EKF, the goal is to find the LN approximations of 

| 1k kx − , | 1k kP − , | 1k ky − , | 1
y

k kP −  and | 1
xy

k kP −  based on 1| 1k kx − −  and 1| 1k kP − − . To simplify the notation, we de-

fine [ ]T T T T
k k k kz x w v=  and | |[ 0 0 ]T T T T n l m

k k k kz x R + += ∈ , so ( , , ) ( , )k k k k k k kf x u w f z u= . 

When propagating from [ 1| 1k kx − − , 1| 1k kP − − ] to [ | 1k kx − , | 1k kP − ], we expand 1 1 1( , )k k kf z u− − −  in 

the neighborhood of 1| 1k kz − − . With the LN approximation, we get 

| 1 1 1 1 1 1| 1 1 | 1[ ( , )] ( , ) LN
k k k k k k k k k k kx E f z u f z u x− − − − − − − − −= ≈ ≡  (16) 

and 

{ }
{ }

| 1 1 1 1| 1 1 1| 1 1 1

1 1 1 1 | 1

( ) ( )( ) | ( )

( ) | ( )

T T
k k z k k k k k k k k z k

T LN
z k k k z k k k

P f E z z z z D f

f Cov z D f P
− − − − − − − − − −

− − − − −

≈ ∇ ⋅ − − ⋅ ∇

= ∇ ⋅ ⋅ ∇ ≡
 (17) 

where )(
1

mlnn
kz Rf ++×
− ∈∇  is the Jacobian matrix evaluated at 1 1| 1k k kz z− − −= . It can be seen that 

( ) ( ) ( ) ( )| 1 1 1| 1 1 1 1

T TLN LN LN LN LN
k k k k k k k kP A P A G G− − − − − − −= ⋅ ⋅ + ⋅  (18) 
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where 
1 1| 1

1 1
k k k

LN n n
k x k z z

A f R
− − −

×
− − =
≡ ∇ ∈  and 

1 1| 1
1 1

k k k

LN n l
k w k z z

G f R
− − −

×
− − =
≡ ∇ ∈  are the Jacobian matrices. 

Similarly, kh  is also linearized to get the approximations for | 1k ky − , | 1
y

k kP −  and | 1
xy

k kP − : 

( ) ( ) ( )( )
( )

| 1 1 | 1 | 1

,
| 1 | 1 | 1

,
| 1 | 1 | 1

( , ,0)LN LN
k k k k k k k k

T Ty LN LN LN LN LN y LN
k k k k k k k k k k

Txy LN LN xy LN
k k k k k k k

y h x u y

P C P C H H P

P P C P

− − − −

− − −

− − −

≈ ≡

≈ + ≡

≈ ≡

 (19) 

where 
| 1 , 0k k k k

LN q n
k x k x x v

C h R
−

×
= =

≡ ∇ ∈  and 
| 1 , 0k k k k

LN q m
k v k x x v

H h R
−

×
= =

≡ ∇ ∈ . 

For the estimation step, (10) can still be used as an approximation. If kf  and kh  are in-

deed linear, EKF is identical to KF. The degree of accuracy of EKF relies on the validity of the 

linear approximation. EKF is not suitable to track multi-modal or highly non-Gaussian condi-

tional PDFs due to the fact that it only updates the first two moments. 

When the system parameters are unknown, it is important to also estimate them. Uncer-

tain parameters can be augmented into system states and estimated using EKF (even if the origi-

nal dynamical system is linear, the dynamical system for the augmented state is nonlinear and so 

KF is not applicable). However, the EKF algorithm is not suitable for estimating unknown pa-

rameters used to parameterize the amplitudes of the uncertainty terms kw  and kv . We discuss 

this issue and provide new solutions in Appendix I. 

4. PARTICLE FILTERS 

 We have seen that EKF can only propagate and estimate the first two moments of the 

conditional PDF. For systems with non-Gaussian uncertainties, it is often desirable to propagate 

and estimate the conditional PDF itself; however, doing so requires, in effect, an infinite number 

of parameters to represent the functional form of the conditional PDF. An alternative is to con-

duct stochastic simulation by drawing samples from the conditional PDF so that the conditional 
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expectation of any function of kx  can be consistently estimated. We focus on stochastic simula-

tion techniques for state estimation in this section and use the term particle filters (PF) to denote 

the resulting algorithms (following van der Merwe et al. 2000; Doucet and Andrieu 2000). Simi-

lar PF algorithms have been called Monte Carlo filters by Kitagawa (1996) and sequential Monte 

Carlo Bayesian filters by Doucet and Godsill (1998) and Doucet et al. (2000).  

4.1 Basic equations 

We first present some basic equations that are useful throughout this section. Let  

{ }0 1, ,...,k kX x x x= , then according to Bayes rule, 

1 1

1 1 1 1 1 1 1 1

1

1 1 1 1
1 1

ˆ ˆ ˆ( , ) ( , , , )ˆ( | ) ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ( , ) ( , | , ) ( | ) ( , | , )

ˆ ˆˆ( ) ( | )
ˆ ˆˆ( | , , ) ( | , )ˆ( | ) ˆˆ( |

k k k k k k
k k

k k

k k k k k k k k k k k k

k k k

k k k k k k k
k k

k

p X Y p X x Y yp X Y
p Y p Y

p X Y p x y X Y p X Y p x y X Y
p Y p y Y

p y x X Y p x X Yp X Y
p y Y

− −

− − − − − − − −

−

− − − −
− −

= =

⋅ ⋅
= =

⋅
= ⋅ 1

1 1
1 1

ˆ( | ) ( | )ˆ( | ) ˆˆ) ( | )
k k k k

k k
k k k

p y x p x xp X Y
p y Y

−
− −

− −

⋅
= ⋅

 (20) 

where we have used the fact that 1 1
ˆˆ ˆ( | , , ) ( | )k k k k k kp y x X Y p y x− − =  and that 1 1

ˆ( | , )k k kp x X Y− − =  

1( | )k kp x x −  based on (1) and the fact that the PDFs for kv  and kw  are prescribed. Evaluating the 

recursive equation in (20), we get 

1 0
0 1

1 11

ˆ( | ) ( | ) ( )ˆ ˆ( | ) ( ) ( | ) ( | )ˆ ˆˆ( | ) ( )

k k
m m m m

k k m m m m
m mm m k

p y x p x x p xp X Y p x p y x p x x
p y Y p Y

−
−

= =−

⋅
= ⋅ = ⋅ ⋅∏ ∏  (21) 

4.2 Importance sampling for state estimation 

Our interest is to develop a stochastic simuation algorithm for the conditional PDF 

ˆ( | )k kp X Y  that is Markovian in that information is required only from time steps 1k −  and k , 

and the earlier state information and observation data can be forgotten. In other words, the sam-
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ple from ˆ( | )k kp X Y  must have the form { }1
ˆ ˆ ˆ,k k kX X x−= , where ˆkx  is the new sample and 1

ˆ
kX −  

is the previous sample from 1 1
ˆ( | )k kp X Y− − . However, such a stochastic simulation algorithm can-

not be directly implemented. This is because 1 1
ˆ( | )k kp X Y− −  is different from 

1 1 1
ˆ ˆ ˆ( | ) ( | , )k k k k kp X Y p X Y y− − −= . 

 We can, however, sample from an importance sampling PDF ˆ( | )k kq X Y  that admits a 

Markovian sampling procedure by choosing 1 1
ˆ( | )k kq X Y− −  so that it is identical to 1

ˆ( | )k kq X Y− . In 

other words, the structure of ( | )k kq X Y  must be such that 1kX −  is independent of ky  conditioned 

on 1kY − . Drawing N  samples { }ˆ : 1,...,i
kX i N=  randomly from ˆ( | )k kq X Y  (we choose ˆ( | )k kq X Y  

so that it can be readily sampled), the expectation of any function ( )kr X  conditioned on k̂Y  can 

be estimated using the importance sampling technique as follows: 

1
,

1

1 ˆˆ ˆ ˆ[ ( ) | ] ( )
N

i i
k k k k k N

i
E r X Y r X r

N
β

=

≈ ⋅ ≡∑  (22) 

where ˆ ˆ ˆ ˆ ˆ( | ) ( | )i i i
k k k k kp X Y q X Yβ =  is the non-normalized importance weight of the i-th sample.  

Any quantity of interest can be estimated with the appropriate ( )r ⋅  function in (22), such 

as engineering response parameters, economic performance parameters or structural model pa-

rameters. Note that the conditional variance of any quantity Zk can be computed by first setting 

( )k kr Z Z=  so that ˆ[ ( ) | ]k kE r Z Y  is simply the conditional expectation of Zk and then setting 

( ) T
k k kr Z Z Z=  so that ˆ[ ( ) | ]k kE r Z Y  is the conditional second moment of Zk.  

Let { }: 1,...,i
kX i N= denote the state variables corresponding to N  random samples from 

ˆ( | )k kq X Y  (before drawing the actual samples). It is readily shown that the estimator 
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1
,

1

1 ( )
N

i i
k N k k

i
r r X

N
β

=

= ⋅∑  is an unbiased estimator of ˆ[ ( ) | ]k kE r X Y  if the support region for 

ˆ( | )k kp X Y  is a subset of that for ˆ( | )k kq X Y : 

1
,

1

1 ( ) ( )

ˆ ˆ ˆ( | ) ( | ) ( ) ( | )

ˆ ˆ( ) ( | ) ( ) |

N
i i

k N q k k q k k
i

k k k k k k k k

k k k k k k

E r E r X E r X
N

p X Y q X Y r X q X Y dX

r X p X Y dX E r X Y

β β
=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ = ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⋅⎣ ⎦
⎡ ⎤= ⋅ = ⎣ ⎦

∑

∫
∫

 (23) 

According to the Central Limit Theorem, 1
,k Nr  converges (as N  approaches infinity) to a Gaus-

sian random variable with mean equal to ˆ[ ( ) | ]k kE r X Y  and with variance that decays as 1/ N . 

Therefore, 1
,k Nr  is a consistent estimator of ˆ[ ( ) | ]k kE r X Y . 

 Although 1
,k Nr  is unbiased and consistent, it is not a feasible estimator because the non-

normalized importance weights ˆ ˆ( | ) ( | )i i i
k k k k kp X Y q X Yβ =  depend on ˆ( | )i

k kp X Y , which cannot 

be computed easily since in order to evaluate ˆ( | )i
k kp X Y , we have to evaluate ˆ( )kp Y , as shown 

by (21), which is a difficult task. Nevertheless, we show that the following estimator is comput-

able while it is asymptotically unbiased and consistent:  

2 1
, ,

1 1

1 1( )
N N

i i j N
k N k k k k N k

i j
r r X r

N N
β β β

= =

⎛ ⎞⎛ ⎞≡ ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  (24) 

where  

1

N
N j

k k
j

Nβ β
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑  (25) 

Note that 2
,k̂ Nr , unlike 1

,k̂ Nr , can be computed conveniently from samples { }ˆ : 1,...,i
kX i N= : 

 2
,

1 1 1

ˆ ˆˆ ( ) ( )
N N N

i j i i i
k N k k k k k

i j i

r r X r Xβ β β
= = =

⎡ ⎤⎛ ⎞
= ⋅ = ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ %  (26) 
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where  

1

0 0
1 1

11 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ) ( | ) ( | ) ( | )

ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    ( | ) ( | ) ( | ) ( | )ˆ ˆ ˆ ˆ( | ) ( | )

N
i i i j j
k k k k k k k k k

j

i jk kN
i i i j j j

m m m m m m m mi j
jm mk k k k

p X Y q X Y p X Y q X Y

p x p xp y x p x x p y x p x x
q X Y q X Y

β
=

− −
== =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

∑

∑∏ ∏

%

 (27) 

Note that the troublesome factor ˆ( )kp Y  in (21) has been cancelled due to the use of the normal-

ized importance weights { }: 1,...,i
k i Nβ =% , i.e. 

1
1

N
i
k

i
β

=

=∑ % . Also, the likelihood functions 

ˆ ˆ( | )i
m mp y x  and 1ˆ ˆ( | )i i

m mp x x −  can be readily evaluated using the prescribed PDFs for mv  and mw  if 

the mappings in (1) uniquely specify mv  and mw , given 1,  and m m my x x − . Our choice of 

ˆ ˆ( | )i
k kq X Y  is such that it can be readily evaluated too. 

To sketch the proof for the asymptotic unbiasedness and consistency of 2
,k Nr , note that 

( ) ˆ ˆ ˆ( | ) ( | ) ( | ) 1i
q k k k k k k k kE p X Y q X Y q X Y dXβ ⎡ ⎤= ⋅ ⋅ =⎣ ⎦∫  (28) 

Therefore, N
kβ  in (25) converges (as N approaches infinity) to a Gaussian random variable with 

mean equal to 1 and with a variance that decays as 1/ N . As a consequence, 

( )lim 1 . .1N
kN

w pβ
→∞

=  (29) 

where w.p. stands for “with probability”, and 

2 1
, ,

1 1

11lim lim ( ) lim ( ) lim

ˆ( ) | . .1

N N
i i N i i

k N k k k k k k NN N N Ni i

k k

r r X r X r
N N

E r X Y w p

β β β
→∞ →∞ →∞ →∞

= =

⎡ ⎤⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⋅ = ⋅ =⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎣ ⎦⎣ ⎦
⎡ ⎤= ⎣ ⎦

∑ ∑  (30) 

which shows that 2
,k Nr   is asymptotically unbiased and consistent as N approaches infinity be-

cause 1
,k Nr  is. 
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The selection of an importance sampling PDF that admits a Markovian procedure is dis-

cussed in Appendix II. The conclusion is that the following importance sampling PDF performs 

well: 

0 1
1

ˆ ˆ( | ) ( ) ( | , )
k

k k m m m
m

q X Y p x p x x y−
=

= ⋅∏  (31) 

The corresponding modified non-normalized importance weight is 

1 1
1

1 1 1

ˆ ˆ( | ) ( | ) ( | ) ( | )
ˆ ˆ( | , ) ( | , )

k
m m m m k k k k

k k
m m m m k k k

p y x p x x p y x p x x
p x x y p x x y

β β− −
−

= − −

⋅ ⋅
= = ⋅∏  (32) 

Doucet and Godsill (1998) and Liu and Chen (1998) discuss the optimality of this importance 

sampling PDF. 

Because of the structure of the algorithm, at any time k , we are only required to store the 

sampled states and weights in time steps k  and 1k − , if the quantity of interest is ( )kr x  and so 

depends only on the current state (although, clearly, additional dependence on the previous state 

1kx − can also be treated). As a result, the following recursive algorithm can be used: 

Algorithm 4.1: Basic PF algorithm 

(1) Initialize the N  samples: Draw 0ˆ from ( )ix p x  and set 1 ,  1,...,i N i Nβ = = . 

(2) At time k , store the previous samples and weights 

ˆi i i ix x β β= =%%  (33) 

For 1,...,i N= , draw 1ˆ ˆ from ( | , )i i
k k kx p x x x y− = %  and update the importance weight 

1

1

ˆ ˆ ˆ( | ) ( | )
ˆ ˆ( | , )

i i i
i i k k k k

i i
k k k

p y x x p x x x x
p x x x x y

β β −

−

= ⋅ = =
= ⋅

= =
%%

%
 (34) 

(3) For 1,...,i N= , ˆ[ ( ) | ]k kE r x Y  can be approximated based on (26) and (30): 
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1 1

ˆ ˆ[ ( ) | ] ( )
N N

i j i
k k

i j
E r x Y r xβ β

= =

⎡ ⎤⎛ ⎞
≈ ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (35) 

where ( )r ⋅  is a function that maps from kx  to the quantity of interest. 

(4) Do Steps (2) and (3) for time steps 1,...,k T= . 

Usually, 1 ˆ( | , )i
k k kp x x x y− = %  in Step 2 is difficult to sample. Note that estimating the first 

two moments of 1 ˆ( | , )i
k k kp x x x y− = %  is a problem that can be solved using a single-time-step 

EKF algorithm. The least-informative PDF (i.e. the maximum entropy PDF; see Jaynes 1957) 

given the estimated two moments, which is a Gaussian PDF (denoted by 1 ˆ( | , )i
LI k k kp x x x y− = % ; 

LI  subscript means ‘least-informative’), can be used in the importance sampling PDF in (31) 

and hence in Step 2 of Algorithm 4.1. The use of 1 ˆ( | , )i
LI k k kp x x x y− = %  is discussed in Doucet 

and Godsill (1998) and van der Merwe et al. (2000). 

Algorithm 4.2: Determining 1 ˆ( | , )i
LI k k kp x x x y− = %  

(1) Uncertainty propagation: compute from (16) and (17) 

{ }
1 1 1 | 1

1 1 1 1 | 1

( | ) ( , ,0)

( | ) ( ) ( )

i i i
LN k k k k k k

i LN LN T i
LN k k k k k k k

E x x x f x u x

Cov x x x G Cov w G P
− − − −

− − − − −

= = ≡

= = ⋅ ⋅ ≡

% % %

%%
 (36) 

where 
1 1

1 1 , 0i
k k

LN
k w k x x w

G f
− −

− − = =
≡ ∇

%
 is the Jacobian matrix, and from (19)  

( ) ( ) ( )( )
( )

1 1 | 1 | 1

,
1 | 1 | 1

,
1 | 1 | 1

( | ) ( , ,0)

( | )

( , | )

i i i
LN k k k k k k k k

T Ti LN i LN LN LN y i
LN k k k k k k k k k k

Ti i LN xy i
LN k k k k k k k k

E y x x h x u y

Cov y x x C P C H H P

Cov x y x x P C P

− − − −

− − −

− − −

= = ≡

= = + ≡

= = ≡

% % %

% %%

% %%

 (37) 

where 
| 1 , 0i

k k k k

LN
k x k x x v

C h
−= =

≡ ∇
%

 and 
| 1 , 0i

k k k k

LN
k v k x x v

H h
−= =

≡ ∇
%

. 

(2) Estimation: compute from (10) 
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, , 1
1 | 1 | 1 | 1 | 1

, , 1 ,
1 | 1 | 1 | 1 | 1

ˆ ˆ( | , ) ( ) ( )

ˆ( | , ) ( )

i i xy i y i i
LI k k k k k k k k k k k k

i i xy i y i xy i T
LI k k k k k k k k k k k

E x x x y x P P y y

Cov x x x y P P P P

−
− − − − −

−
− − − − −

= = + ⋅ ⋅ −

= = − ⋅ ⋅

% %% % %

% % % %%
 (38)  

Finally, 1 ˆ( | , )i
LI k k kp x x x y− = %  is the Gaussian PDF with the two moments in (38). 

4.3 Reducing degradation in performance: recursive resampling and parallel particle fil-

ters 

Note that it is desirable to have the importance weights { : 1,2,... }i i Nβ =  be approxi-

mately uniform so that all samples contribute significantly in (35), but they become far from uni-

form as k  grows, which is due to the recursion in (32) and the fact that ˆ( | )k kq X Y  ≠ ˆ( | )k kp X Y . 

Ultimately, a few weights become much larger than the rest, so the effective number of samples 

is small. Nevertheless, this degradation can be reduced, as described in this section and the next. 

Instead of letting the N  samples evolve through time independently (Algorithm 4.1), we 

can resample the samples when the importance weights become highly non-uniform (Kitagawa 

1996; Doucet and Godsill 1998; Liu and Chen 1998; Doucet and Andrieu 2000). After the resam-

pling, the importance weights become uniform, therefore the degradation problem is alleviated. 

The resampling step tends to terminate small-weight samples and duplicate large-weight samples 

and, therefore, forces the N  samples to concentrate in the high probability region of ˆ( | )k kp x Y .  

Although the resampling step sets the weights back to uniform, the price to pay is that the 

samples become dependent and therefore collectively carry less information about the state. As a 

result, the resampling procedure should only be executed when the importance weights become 

highly non-uniform. This can be done by monitoring the coefficient of variation (c.o.v.) of the 

importance weights. The resampling procedure is executed only when this c.o.v. exceeds a cer-

tain threshold, indicating that the variability in the importance weights is large. 
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Another way to alleviate the dependency induced by the resampling step is to conduct 

several independent PF algorithms and combine all of the obtained samples. Although the sam-

ples obtained in a single algorithm can be highly dependent, the samples from different algo-

rithms are completely independent. The resulting algorithm is as follows: 

Algorithm 4.3: Parallel PF algorithm with resampling 

(1) Initialize N  samples for each of the L  parallel PFs: Draw ,
0ˆ  from ( )i jx p x  and set 

, 1i j Nβ =  for 1,...,i N= , 1,...,j L= .   

(2) Perform the following steps (3)-(4) for 1,...,j L=  independently. Since the processes are 

completely independent, they can be conducted in parallel. 

(3) At time k , store the previous samples and weights 

, , , ,ˆi j i j i j i jx x β β= =%%  (39) 

For 1,...,i N= , draw , ,
1 ˆ from ( | , )i j i j

LI k k kx p x x x y− = %  and update the importance weight 

, , ,
, , 1

, ,
1

ˆ( | ) ( | )
ˆ( | , )

i j i j i j
i j i j k k k k

i j i j
LI k k k

p y x x p x x x x
p x x x x y

β β −

−

= ⋅ = =
= ⋅

= =
%%

%
 (40) 

(4) Compute the c.o.v. of ,{ : 1,..., }i j i Nβ = .  

If the c.o.v. is larger than the prescribed threshold, then execute the resampling step for 

1,...,i N= : 

, , , ,

1

ˆ . .
N

i j i j i j i j

i
x x w p β β

=

= ∑  (41)  

and set , 1i j Nβ =  for 1,...,i N= . Otherwise, for 1,...,i N= : 

, , , , ,

1

ˆ
N

i j i j i j i j i j

i
x x β β β

=

= = ∑  (42)  
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Store , ,
,

1

ˆ ˆ( )
N

j i j i j
k N

i
r r x β

=

= ⋅∑
.
 

(5) ˆ[ ( ) | ]k kE r x Y  can be then approximated by 

,
1

ˆ ˆ[ ( ) | ]
L

j
k k k N

j
E r x Y r L

=

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠
∑  (43) 

(6) Do Steps 2 to 5 for 1,...,k T= . 

4.4 Reducing degradation in performance: local random walk 

After the resampling step (Algorithm 4.3), large-weight samples are duplicated; there-

fore, some samples are the same samples of ˆ( | )k kp x Y , which is not desirable from the point of 

view of preventing degradation. Andrieu et al. (1999) use the Markov chain Monte Carlo 

(MCMC) technique to force the duplicated samples to take a local random walk at each time 

step, where ˆ( | )k kp x Y  is the stationary PDF of the Markov chain. The detailed procedure for the 

MCMC step is also given in Ching et al. (2004). 

4.5 Advantages and disadvantages of the PF technique 

The advantages of the PF technique include (1) as N  (the number of samples per algo-

rithm) approaches infinity, the value of any function of the state kx  estimated by PF converges to 

its expected value; therefore, the PF technique can be used to validate other methodologies; and 

(2) parallel computations are possible for PF algorithms. A disadvantage of the PF technique is 

that it is computationally expensive, especially when the degradation is severe so that we need 

large N  and L  to have the algorithm converge. In general, the required N  and L  grow with the 

size of the effective support region of ˆ( | )k kp x Y . A simple test for convergence is to add parallel 

particle filters until the estimated quantity of interest, ( )kr x , does not significantly change. For 
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linear systems with time-varying unknown parameters, a more efficient PF algorithm is derived 

in Ching et al. (2004). 

5. NUMERICAL EXAMPLES 

We present three examples in this section. We generate data that is contaminated by noise 

for three simulated dynamical systems. With the simulated data, we use identification models 

that are derived from these dynamical systems to conduct EKF and PF and we compare their per-

formance. The goal of these examples is to see if these techniques produce consistent results. 

5.1 Planar four-story shear building with time-varying system parameters 

Data generation 

We first describe the system that generates the simulated data. Consider an idealized pla-

nar four degrees of freedom (DOF) shear building system with known time-invariant masses 

equal to 1 2 3 4 250,000m m m m kg= = = =  (subscript denotes the story/floor number). The inter-

story stiffnesses 1k , 2k , 3k  and 4k  change through time as shown in Figure 1 ( 1k , 3k  and 4k  

drift around certain values, while 2k  significantly decreases and then partially recovers). The in-

ter-story viscous damping coefficients are 1c , 2c , 3c  and 4c  and are also time-varying (Figure 1). 

The time evolutions of 1k , 3k , 4k , 1c , 2c , 3c  and 4c  are Brownian motions with standard devia-

tion of the drift equal to 2% of their mean values during each sampling interval described later. 

The governing equation of this system subject to base excitation is 

t t t t t tMx C x K x Fu+ + =&& &  (44) 

where 
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,i tx  is the displacement of the ( 1i + )-th floor (fifth floor is the roof) relative to the ground at time 

t ; tu  is the acceleration at the base (first floor of the building); and ,i tc  and ,i tk  are the inter-

story damping coefficient and stiffness of the i -th story, respectively, at time t . 

 We generate the data using white-noise for the excitation tu . The observed data ˆty  is ab-

solute acceleration time histories at the four stories: 

1,

2, 1

3,

4,

[ ]

t t

t t
t t t t t t t

t t

t t

x u
x u

y v M C x K x v
x u
x u

−

+⎡ ⎤
⎢ ⎥+⎢ ⎥= + Γ ⋅ = − + + Γ ⋅
⎢ ⎥+
⎢ ⎥+⎣ ⎦

&&

&&
&

&&

&&

 (46) 

where 4 ~ (0, )tv R N I∈  are the (stationary) measurement uncertainties for ty ; 

1 4( ,..., )diag γ γΓ =  is such that the overall signal/noise rms amplitude ratios for each channel is 

roughly equal to 10. Both the excitation and observation are sampled at a sampling interval of 

0.02 second and are shown in Figure 2. With the excitation and observation of the system, i.e. 

{ }: 1,...,tu t T=  and { }ˆ : 1,...,ty t T= , the goal is to estimate the system states (displacements and 

velocities) as well as the system parameters (dampings, stiffnesses and the uncertainty parame-

ters) in real time. 
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Identification model 

Now we describe the identification model. We use the following time-varying linear 

state-space model as our identification model:  

1 1 1

1 1

0 0
0

0 0

t t

t t t t t t t

t

t t t t t t t

x x
d x M K x M C x M F u w
dt

G

y M K x M C x H v

θ

− − −

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + ⋅ + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= − − + ⋅

&

& &

&

 (47) 

where ~ (0, )tw N I ;  ~ (0, )tv N I ; 12 12G R ×∈  is a diagonal matrix whose diagonals we have to 

specify (the reason that we have to specify it will be explained later); 1, 2, 3, 4,( , , , )t t t t tH diag h h h h=  

where the diagonals are unknown parameters (i.e. the four uncertainty parameters); and 12
t Rθ ∈  

is the vector containing system parameters (including four stiffnesses, four dampings and four 

uncertainty parameters);. The dimension of the state of the identification model is twenty (four 

displacements, four velocities, four stiffnesses, four dampings and four uncertainty parameters) 

although the dimension of the state in (44) is only eight. 

 To complete the probabilistic identification model, we must also specify the prior PDF 

for the entire (augmented) state trajectory { }: 0,...,
TT T T

t t tx x t Tθ⎡ ⎤ =⎣ ⎦& . More specifically, for 

the model in (47), we must specify the following: the prior PDF of 0x  and 0x& , the prior PDF of 

0θ , and the diagonals of the G  matrix. Note that the identification model in (47) uses a 

Brownian-motion prior PDF for the parameter evolution { }: 0,...,t t Tθ =  due to the following 

dynamical equation in (47): 

t tG wθ = ⋅&  (48) 
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A diagonal G  matrix means that all system parameters are known a priori to drift inde-

pendently. The effect of the G  matrix is similar to the forgetting factor often used in adaptive 

filtering (Ljung and Gunnarsson 1990). When the entries of G  are large, the system parameters 

are allowed to drift more freely, relaxing the dependency between parameter values of adjacent 

time steps; therefore, the identified parameters only reflect most recent data. The converse is true 

when the entries of G  are small; in this case, the identified parameters can reflect data from the 

remote past. 

In this example, the prior PDF for 0x  and 0x&  is taken to be zero-mean Gaussian with 

large variances; the prior PDF of 0θ  is taken to be Gaussian with mean equal to the actual value 

of 0θ  and large variances; the diagonal entries of G  are chosen such that in each time step, each 

parameter drifts with a coefficient of variation (c.o.v., defined by the standard deviation divided 

by the mean value) equal to 2%. Recall that for k1, k3, k4, c1, c2, c3 and c4, their actual evolutions 

(see Figure 1) are Brownian motions with the same 2% drift c.o.v., i.e. there is no modeling error 

for the evolutions of 1k , 3k , 4k , 1c , 2c , 3c  and 4c . But for 2k  and the four uncertainty parame-

ters, the actual evolutions are not Brownian motions (the actual evolution of 2k  is shown in Fig-

ure 1; the four uncertainty parameters are actually constant), while the identification model uses 

a Brownian-motion prior on their evolutions. 

 Before we can proceed, we first convert (47) to the following discrete-time system using 

numerical integration (integrate over time step): 

1

1 1 1 1

1

, , , ,
k k k

k k k k k k k k k k

k k k

x x x
x f x u w y h x u v
θ θ θ

−

− − − −

−

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

& & &  (49) 
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where 1kf −  is evaluated using Matlab command ODE23. With the above discrete-time identifica-

tion model, EKF can be conducted. Since EKF is not suitable for directly tracking the uncer-

tainty parameters (i.e. matrix H  in Appendix I), we implement Algorithm A.2 with (64) and 

0.95γ =  for the estimation of the uncertainty parameters. For PF, the uncertainty parameters are 

not separately treated because they are included in the augmented state vector in (47). 

Results 

The stiffness, damping and uncertainty parameter estimates, and the associated 95% con-

fidence intervals from EKF and PF (with N = 200 samples for each of L = 10 parallel PF and the 

importance weight c.o.v. threshold = 200% using Algorithms 4.3 with the local random walk 

step described in Ching et al. (2004)) are shown in Figures 3-8 (there is no confidence interval 

available for the EKF uncertainty parameter estimates). For this example, using more samples in 

PF than 2000N L⋅ =  gives little improvement in the convergence of PF, indicating that the re-

sults are close to convergence. We treat the results from PF as a comparison standard since it as-

ymptotically gives consistent estimates for the conditional means and variances. 

In Figures 3-8, the thick lines indicate the actual parameter evolutions while the thin 

dashed lines are the conditional means of the identified system parameters and the thin dotted 

lines indicate the 95% confidence intervals. The results from EKF are similar to those of PF. 

Both algorithms successfully track the system parameters; for most parameters, the actual pa-

rameter evolutions lie within the 95% confidence bounds. Notice that although the Brownian 

motion prior for 2k  and the uncertainty parameters does not exactly match their actual evolu-

tions, both Bayesian algorithms can still appropriately track 2k  and the uncertainty parameters. 

Compared to the accuracy of the stiffnesses, the estimates of the damping and uncertainty pa-

rameters are worse and the associated uncertainties are larger. Although EKF and PF perform 
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roughly equally in this example, there is a noticeable difference in the variances of the identified 

damping from PF, which are slightly larger than those from EKF. 

5.2 Nonlinear hysteretic damping system with unknown system parameters 

Data generation 

 The previous example is a time-varying linear system. In the current example, we con-

sider a time-varying nonlinear system consisting of a single DOF (SDOF) Bouc-Wen hysteretic 

damping system (Wen 1980). The purpose of this example is to compare the performances of 

different methods for tracking the state and unknown parameters of a nonlinear system. The sys-

tem that generates the data can be described by the following governing equation: 

4, 4,1
1, 2, 3,

1/ 1/

1/ 1/

t t

t t

t t t

t t t t t t t t t t

t t t t

x x
d x m r m u
dt

r x x r r x r

y m r m u v

θ θθ θ θ−

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ = − ⋅ + ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⋅ − ⋅ + ⋅⎢ ⎥⎣ ⎦
= − ⋅ + ⋅ +

&

&

& & &
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where tr  is the restoring force of the SDOF system; m  is the mass, which is set to unity during 

the data generation; tu  is a white-noise excitation force on the mass; ty  is the acceleration 

measured on the mass; tv  is stationary such that the overall signal/noise amplitude ratio is 10; 

1, 2, 3, 4,, , ,t t t tθ θ θ θ  are time-varying system parameters (their actual fluctuations are shown in Fig-

ures 10-11, and they are Brownian motions with drift c.o.v. equal to 2% during each sampling 

interval): 1,tθ  is the stiffness, 2,tθ , 3,tθ  and 4,tθ  are parameters that fine tune the shape of the hys-

teretic loop. Note that Bouc-Wen hysteretic damping system is Markovian in the sense that we 

can define a system state such that the current system status is completely characterized by the 



 26

state. Both the excitation tu  and observation ˆty  (shown in Figure 9) are sampled at a sampling 

interval of 0.5 second (roughly five sample points per oscillation cycle of the system). 

Identification model 

Given the data tu  and ˆty , the goal is to estimate the means and variances of the identified 

system state and system parameters using the following identification model: 
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where 5 ~ (0, )tw R N I∈  ; ~ (0,1)tv R N∈  ; we assume that m  is known and so it is not consid-

ered as one of the uncertain parameters. 

The prior PDF for 0x  and 0x&  is taken to be zero-mean Gaussian with large variances; the 

prior PDF of 1,0 2,0 3,0 4,0 0, , , ,hθ θ θ θ  is taken to be Gaussian with mean equal to their actual value at 

time zero and large variances; the G  matrix in (51) is taken to be diagonal. The diagonals of G  

are chosen such that in each time step, each parameter is allowed to drift with a c.o.v. equal to 

2%, i.e. no modeling error for the evolutions of 1,tθ , 2,tθ , 3,tθ  and 4tθ ; but modeling error exists 

for the evolution of th  in (51)  (the actual th  is constant instead of a Brownian motion). 

For EKF, we implement Algorithm A.2 with (64) and 0.95γ =  for the estimation of the 

uncertainty parameters th . As before, for PF, there is no need for the uncertainty parameters to 
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be separately treated. The continuous-time model is numerically integrated to get the discrete-

time version of this model similar to (49) with sampling rate equal to 0.5 second.  

Results 

Figures 10-15 show the results of identification of EKF and PF (as before, N  = 200 and 

L  = 10 and the importance weight c.o.v. threshold = 200% using Algorithms 4.3 with the local 

random walk step). For this example, using more samples in PF than 2000N L⋅ =  gives little 

improvement in the convergence of PF, indicating that the results are close to convergence. We 

treat the results from PF as a comparison standard. As before, the 95% confidence intervals on 

the parameters and states are indicated by thin dotted lines in Figures 10-15, except for Figure 

15. 

We find that EKF performs less effectively than PF: at some time instants, the EKF esti-

mates of the stiffness parameter 1,tθ  oscillate around the actual evolution (Figure 10), while this 

is not seen for PF (Figure 11). Also, the EKF estimates for 2,tθ  (Figure 10) significantly deviate 

from those of PF (Figure 11). For the estimation of displacement, velocity and restoring force, 

the performances from the three methods are similar (Figures 12 and 13). However, PF estimates 

the uncertainty parameters th much better than EKF (Figures 15 and 16). 

5.3 Lorenz chaotic system 

The Lorenz system is a chaotic system discovered by Lorenz (1963) when he solved a 

simplified Rayleigh-Bernard problem regarding two-dimensional fluid motion driven by buoy-

ancy due to a temperature difference across its height. The resulting simplified set of differential 

equations that consider the first few modes of the system is 
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where 1,tx  specifies the time evolution of the stream function of the first mode, whose contours 

are the streamlines; 2,tx  and 3,tx  specify the time evolutions of the temperature of the first two 

modes of the system; the parameter σ  depends on the properties of the fluid (for water the value 

is typically between 1 and 4); the number b  depends on the scales of the modes; r  is the 

temperature difference: for small r , the system is asymptotically stable, i.e. 1, 2,t tx x→∞ →∞= =  

3, 0tx →∞ = . For large r , chaos occurs with the so-called butterfly attractor where the ultimate fate 

of a trajectory of the system is to wander around two unstable equilibrium points and the trajec-

tory is extremely sensitive to its initial condition. 

Data generation 

In this example, the values of σ , b  and r  are set to be 3, 1 and 26 ( r  is large so that the 

butterfly attractor occurs), and we observe 1,tx  (contaminated by noise) with sampling interval of 

0.5 second: 

1,t t ty x h v= + ⋅  (53) 

where h  is chosen such that the overall signal/noise ratio is 10. Figure 16 shows the observed 

value ˆty , which clearly shows that the trajectory of 1,tx  switches several times between the two 

unstable equilibrium points at 1 15 and 5x x= − =   (especially during 0-25 second). 

Identification model 

The goal is to estimate the trajectory of the three system states based on ˆty  using EKF 

and PF. When applying EKF and PF, we assume that we are very uncertain about the position of 
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the initial state (i.e. large variances for the prior PDF of the three states); we also assume that σ , 

b , r  and h  are known, and their actual values are used during the identification. Equations (52) 

and (53) are directly used in the identification model. 

Results 

Figures 17-18 show the estimates made by EKF and PF (with N  = 200 and L  = 10 and 

the importance weight c.o.v. threshold = 200% using Algorithms 4.3 with the local random walk 

step). For this example, using 2000N L⋅ =  samples in PF is found to be sufficient for conver-

gence, so once again, we treat the results from PF as a comparison standard. Also, as before, the 

95% confidence intervals on the states are indicated by thin dotted lines in Figures 17-18.  

It is clear that PF can successfully track all three system states, while EKF can only relia-

bly track the observed state varialbe 1,tx  (since ˆty  directly measures 1,tx , it is possible that an 

inappropriate filtering algorithm can still track 1,tx  perfectly). EKF can track some parts of 2,tx  

and 3,tx  (but performs poorly in other parts, especially in the beginning portions of 2,tx  and 3,tx  

where the system switches between the two equilibrium points). 

6 CONCLUSION 

 We have presented two Bayesian state-estimation algorithms in detail, including the older 

extended Kalman filter (EKF) and the newer particle filter (PF), which is a stochastic simulation 

approach. Their performance is examined using three numerical examples, which show that PF is 

the best one to use, while EKF can sometimes create misleading results; the examples represent 

three different classes of dynamical systems: a linear model with time-varying system parameters 

(Section 5.1), the nonlinear hysteretic model (Section 5.2) that can be considered to give moder-

ately nonlinear behavior and the Lorenz chaotic model (Section 5.3) that gives highly nonlinear 

behavior. 
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 We believe that PF has performed satisfactorily for all examples since it always provides 

estimates for the system state and unknown parameters with associated confidence intervals that 

are consistent with their actual values. In theory, PF should provide estimates that asymptotically 

converge to the expected values. It turns out that EKF can only track the system state and un-

known parameters for the first example, its performance for the second example is only fair, and 

it performs poorly for the Lorenz chaotic example. This is consistent with the expectation that 

EKF is not suitable for highly nonlinear models. 
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APPENDICES 

Appendix I. Estimating uncertainty parameters in EKF 

When the amplitudes of the uncertainty terms are unknown, it is important to estimate 

them. This can usually be done by parameterizing the uncertainty amplitudes using some uncer-

tainty parameters, e.g. the covariance matrices of the uncertainties. Uncertainty parameters can 

be augmented into system states along with other system parameters and estimated using EKF. 

Estimating uncertainty parameters is essential since ˆ( | )k kp x Y  usually strongly depends on them. 

Throughout this section, we consider the following state transition and observation equations: 

1 1 1 1( , , ) ( , ) ( )k k k k k k k k k k k kx f x u w y h x u H vρ− − − −= = + ⋅  (54) 

where kρ  parameterizes the covariance matrix of k kH v , denoted by kΛ  (i.e. 

( ) ( ) ( )T
k k k k k kH Hρ ρ ρΛ = ). We focus on the case that the joint PDF of { }: 1,...,kw k T=  is 

known, while ( )k kρΛ  matrix is unknown since this is the way we model the uncertainties for the 

numerical examples in Section 5. In practice, we cannot assume that both the PDFs of the proc-

ess and measurement uncertainty terms to be unknown. It is impossible to estimate both of them 

merely using the observations k̂Y . 
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 We show that { }: 1,...,k k Tρ =  is not identifiable using EKF, as follows. Suppose we 

would like to estimate the state and kρ  at the same time by augmenting the state vector into 

Ta T T
k k kx x ρ⎡ ⎤= ⎣ ⎦  and conducting EKF. Notice that in the estimation step for EKF (see (10)), the 

main driving force for updating the state from | 1k kx −  to |k kx  is the prediction error | 1ˆk k ky y −− . An 

element of the state vector will be effectively updated if | 1k ky −  is sensitive to the change of that 

element, and vice versa. For the system in (54), | 1k ky −  obtained from EKF is insensitive to kρ . 

Therefore, the uncertainty parameters { }: 1,...,k k Tρ =  are not identifiable using EKF. 

The identifiability issue for EKF can be handled by an Expectation-Maximization (EM) 

algorithm (Shumway and Stoffer 1982), described as follows. First, consider a more restrictive 

uncertainty model: 1 Tρ ρ ρ= = =L  (i.e. uncertainty amplitudes are time-invariant). We will 

return to the general time-varying case later. The following EM algorithm can be used to esti-

mate ρ : 

Algorithm A.1: EM algorithm 

(1) Initialize (0)ρ . 

(2) At the r-th iteration: 

(E-step) Evaluate ( )( ) ( )ˆ ˆ( ) log , | ,r r
k k kL E p Y X Yρ ρ ρ⎡ ⎤≡ ⎢ ⎥⎣ ⎦

 (55) 

(M-step) Compute { }( 1) ( )arg max ( )r rL
ρ

ρ ρ+ =  (56) 

(3) Go back to step (2) for the ( 1r + )-th iteration and continue cycling until ( )rρ  converge. 

The term ( )ˆlog , |k kp Y X ρ  in (55) has the following expression: 
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where const  denotes a quantity that does not depend on ρ . Therefore, 
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where TR[.] denotes matrix trace; ( )
|
r

t kh  and ,( )
|
h r

t kP  denote ( )ˆ[ ( , ) | , ]r
t t t kE h x u Y ρ  and 

( )ˆ[ ( , ) | , ]]r
t t t kCov h x u Y ρ , respectively. Unfortunately, Algorithm A.1 cannot be implemented on-

line because evaluating ( )
|
r

t kh  and ,( )
|
h r

t kP  for t k<  requires an offline methodology. Now let us 

consider an on-line version of ( ) ( )rL ρ , denoted by ( ) ( )rl ρ : 
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One can verify that ( ) ( )[ ( )] [ ( )]r rE L E lρ ρ= , i.e. they have the same expected value. In Algorithm 

A.1, instead of evaluating and maximizing ( ) ( )rL ρ  in the E-step and M-step, we evaluate and 

maximize ( ) ( )rl ρ , and the resulting algorithm is on-line. 

 Now let us consider a general uncertainty model: kρ  varies with time. So we have 
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For an on-line methodology, at time instant k  we are only interested in estimating kρ . In the 

case where the parameterization of kΛ  is such that it is a full matrix without any specific struc-

ture (i.e. kρ  contains all of the entries in the upper triangle region of kΛ ), maximizing 

( )
1( )r

kl ρ ρL  with respect to kρ  yields 

( 1) ( ) ,( ) ( ) ( )
| | | |ˆ ˆ ˆ( ) 2r T r T h r r r T

k k k k k k k k k k k k ky y h y P h hρ +Λ = ⋅ − ⋅ + + ⋅  (61) 

In the case where kΛ  is constrained to be diagonal (i.e. kρ  contains all the diagonal entries of 

kΛ ), maximizing ( )
1( )r

kl ρ ρL  with respect to kρ  yields 

( )( 1) ( ) ,( ) ( ) ( )
| | | |ˆ ˆ ˆ( ) 2r T r T h r r r T

k k k k k k k k k k k k kdiag y y h y P h hρ +Λ = ⋅ − ⋅ + + ⋅  (62) 

where ( )diag A  is a diagonal matrix whose diagonal entries are identical to those of A . 

 The EKF algorithm with improved ability of estimating uncertainty parameters is as fol-

lows: 

Algorithm A.2: EM algorithm for estimating uncertainty parameters in EKF 

(1) Initialize EKF (i.e. specify 0|0x  and 0|0P , and so on). 
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(2) At the beginning of time step k , assign a reasonable value for (0)
kρ . Then do the itera-

tions in Algorithm A.1: 

a. Evaluate ( ) ( )
| 1 1

ˆ[ ( , ) | , , ]r c c r
k k k k k k k kh E h x u Y ρ ρ ρ−= L  and ,( ) ( )

| 1 1
ˆ[ ( , )| , , ]h r c c r

k k k k k k k kP Cov h x u Y ρ ρ ρ−= L  

( c
tρ  is the final estimate of tρ , see step c. below) using EKF. 

b. Maximize ( )
1( )r

kl ρ ρL  with respect to kρ  to obtain ( 1)r
kρ
+  as well as ( 1)( )r

k kρ
+Λ  

(e.g. (61) or (62)). 

c. Go back to step a. for the ( 1r + )-th iteration and continue cycling until ( )r
kρ  con-

verges. Denote the converged estimate of kρ  by c
kρ . The final estimate of |k kx  

and |k kP  from EKF are 1
ˆ( | , )c c

k k kE x Y ρ ρL  and 1
ˆ( | , )c c

k k kCov x Y ρ ρL . 

(3) Go back to step (2) for the ( 1k + )-th iteration. 

A simple technique that incorporates a forgetting factor γ  ( 0 1γ≤ ≤ ) can also imple-

mented to control the degree of oscillation in { }: 1,...,k k Tρ =  through time. This is done by let-

ting the actual estimate of kΛ  be the convex combination of 1 1( )c
k kρ− −Λ  and the new estimate of 

kΛ . Using (61) and (62) as examples: 

( 1) ( ) ,( ) ( ) ( )
1 1 | | | |ˆ ˆ ˆ( ) ( ) (1 ) 2r c T r T h r r r T

k k k k k k k k k k k k k k ky y h y P h hρ γ ρ γ+
− − ⎡ ⎤Λ = ⋅Λ + − ⋅ ⋅ − ⋅ + + ⋅⎣ ⎦  (63) 

for (61), and 

( 1) ( ) ,( ) ( ) ( )
1 1 | | | |ˆ ˆ ˆ( ) ( ) (1 ) 2r c T r T h r r r T

k k k k k k k k k k k k k k kdiag y y h y P h hρ γ ρ γ+
− − ⎡ ⎤Λ = ⋅Λ + − ⋅ ⋅ − ⋅ + + ⋅⎣ ⎦  (64) 

for (62). 

The identifiability issue for uncertainty parameters does not exist for PF due to the fact 

that stochastic simulation provides consistent estimates for any system parameters. 
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Appendix II. Choice of a good importance sampling PDF 

In this appendix, we discuss the selection of the importance sampling PDF admitting a 

Markovian sampling procedure using the following two examples: 

1 0 1
1

ˆ( | ) ( ) ( | )
k

k k m m
m

q X Y p x p x x −
=

= ⋅∏  (65) 

and 

2 0 1
1

ˆ ˆ( | ) ( ) ( | , )
k

k k m m m
m

q X Y p x p x x y−
=

= ⋅∏  (66) 

Their corresponding non-normalized importance weights are 

(1) (1)
1

11 1 1

ˆ ˆ ˆ( | ) ( | ) ( | )
ˆ ˆ ˆˆ ˆ( | ) ( | ) ( | )

k
k k m m k k

k k
mk k m m k k

p X Y p y x p y xw w
q X Y p y Y p y Y−

= − −

≡ = = ⋅∏  (67) 

and 

(2) (2)1 1
1

12 1 1 1 1

ˆ ˆ ˆ( | ) ( | ) ( | ) ( | ) ( | )
ˆ ˆ ˆˆ ˆ ˆ ˆ( | ) ( | , ) ( | ) ( | , ) ( | )

k
k k m m m m k k k k

k k
mk k m m m m m k k k k k

p X Y p y x p x x p y x p x xw w
q X Y p x x y p y Y p x x y p y Y

− −
−

= − − − −

⋅ ⋅
≡ = = ⋅

⋅ ⋅∏  (68) 

respectively. Both choices result in inevitable degradation, i.e. the corresponding importance 

weights become highly non-uniform through time.  

We use the following example to show that 1
ˆ( | )k kq X Y  results in more severe degrada-

tion. Consider the following 1-D state-space system where kw  and kv  are zero-mean Gaussian 

variables with unit variance: 

1 0.5 2 0.01k k k k k k kx x u w y x v+ = ⋅ + + ⋅ = + ⋅  (69) 

Note that the observation ˆky  is accurate because of the small uncertainty (0.01 standard devia-

tion). For 1
ˆ( | )k kq X Y , at time k , 1

ˆ i
kX −  is updated by { }1

ˆ ˆ ˆ,i i i
k k kX X x−= , where 

2
1 1ˆ ˆ~ (0.5 ,2 )i i

k k kx N x u− −⋅ +  (70) 
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which is a wide bandwidth Gaussian function. However, such ˆ i
kx  is very likely to reside in a low 

likelihood region of ˆ( | )k kp y x , i.e. ˆ ˆ( | )i
k kp y x  is small, due to the fact that ˆ( | )k kp y x  is a sharp 

Gaussian likelihood function whose maximum is close to ˆky  owing to the high observation accu-

racy. Nevertheless, as N  grows, some samples of kx  will have chance to reside in the high like-

lihood (sharp) region of ˆ( | )k kp y x ; therefore, the set ˆ ˆ{ ( | ) : 1,..., }i
k kp y x i N=  becomes quite non-

uniform. Recall that the weight that associated with 1
ˆ( | )k kq X Y  is 

1

ˆ ˆ( | )
k

i i
k m m

m

w p y x
=

=∏  (71) 

So the set { : 1,..., }i
kw i N=  becomes highly non-uniform, and this degradation gets aggravated as 

k  grows. On the other hand, for 2
ˆ( | )k kq X Y , at time k , 1

ˆ i
kX −  is updated by { }1

ˆ ˆ ˆ,i i i
k k kX X x−= , 

where 

1ˆ ˆ ˆ~ ( | , )i i
k k k kx p x x y−  (72) 

which is a PDF whose center is close to ˆky . Therefore, non-uniformity of { : 1,..., }i
kw i N=  is less 

severe. 

Nevertheless, 1
ˆ( | )k kq X Y  remains a popular importance sampling PDF (e.g. it was ado-

pted in Kitagawa (1996)) due to the fact that if the uncertainty term 1kw −  is additive, i.e. 

1 1 1 1 1( , )k k k k k kx f x u G w− − − − −= + ⋅  (73) 

then the sample at each time k  is simply 

1 1 1 1 1ˆ ˆ~ ( , ),i i T
k k k k k kx N f x u G G− − − − −⎡ ⎤⎣ ⎦  (74) 

which is easy to sample. 
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FIGURE CAPTION 

Figure 1. Time evolutions of the actual inter-story stiffnesses and dampings 

Figure 2. The simulated excitation and observation data 

Figure 3. The EKF estimates of inter-story stiffness 

Figure 4. The PF estimates of inter-story stiffness 

Figure 5. The EKF estimates of inter-story damping 

Figure 6. The PF estimates of inter-story damping 

Figure 7. The EKF estimates of uncertainty parameters 1, 2, 3, 4,, , ,t t t th h h h  

Figure 8. The PF estimates of uncertainty parameters 1, 2, 3, 4,, , ,t t t th h h h  

Figure 9. The excitation force tu  and the observed acceleration ˆty  

Figure 10. The EKF estimates of the system parameters 

Figure 11. The PF estimates of the system parameters 

Figure 12. The EKF estimates of the system states 

Figure 13. The PF estimates of the system states 

Figure 14. The EKF estimates of the uncertainty parameter 

Figure 15. The PF estimates of the uncertainty parameter 

Figure 16. The plot for ˆty  

Figure 17. The EKF estimates of the system states 

Figure 18. The PF estimates of the system states 
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Figure 1. Time evolutions of the actual inter-story stiffnesses and dampings 



 42

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

Time (sec)

A
cc

el
er

at
io

n 
da

ta
 (m

/s
ec

2 )

base (input)

0 2 4 6 8 10 12 14 16 18 20
-10

0

10
roof

0 2 4 6 8 10 12 14 16 18 20
-10

0

10
4th floor

0 2 4 6 8 10 12 14 16 18 20
-10

0

10
3rd floor

0 2 4 6 8 10 12 14 16 18 20
-10

0

10
2nd floor

 

Figure 2. The simulated excitation and observation data 



 43

0 5 10 15 20
0

200

400

600

800

1000

Time (sec)

S
tif

fn
es

s 
(M

N
/m

)

Actual k4,t   

EKF mean estimate

0 5 10 15 20
0

200

400

600

800

1000

Time (sec)

S
tif

fn
es

s 
(M

N
/m

)

Actual k3,t   

EKF mean estimate

0 5 10 15 20
0

200

400

600

800

1000

Time (sec)

S
tif

fn
es

s 
(M

N
/m

)

Actual k2,t   

EKF mean estimate

0 5 10 15 20
0

200

400

600

800

1000

Time (sec)

S
tif

fn
es

s 
(M

N
/m

)
Actual k1,t   

EKF mean estimate

 

Figure 3. The EKF estimates of inter-story stiffness 
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Figure 4. The PF estimates of inter-story stiffness 
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Figure 5. The EKF estimates of inter-story damping 
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Figure 6. The PF estimates of inter-story damping 
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Figure 7. The EKF estimates of uncertainty parameters 1, 2, 3, 4,, , ,t t t th h h h  
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Figure 8. The PF estimates of uncertainty parameters 1, 2, 3, 4,, , ,t t t th h h h  
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Figure 9. The excitation force tu  and the observed acceleration ˆty  
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Figure 10. The EKF estimates of the system parameters 
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Figure 11. The PF estimates of the system parameters 
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Figure 12. The EKF estimates of the system states 
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Figure 13. The PF estimates of the system states 
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Figure 14. The EKF estimates of the uncertainty parameter 
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Figure 15. The PF estimates of the uncertainty parameter 



 56

0 5 10 15 20 25 30 35 40 45 50
-8

-6

-4

-2

0

2

4

6

8

10

12

Time (sec)

y t

 

Figure 16. The plot for ˆty  
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Figure 17. The EKF estimates of the system states 
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Figure 18. The PF estimates of the system states 

 


