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Abstract

Asymptotic approximations and importance sampling methods are presented for evaluating a class of
probability integrals with multiple design points that may arise in the calculation of the reliability of
uncertain dynamical systems. An approximation based on asymptotics is used as a ®rst step to provide a
computationally e�cient estimate of the probability integral. The importance sampling method utilizes
information of the integrand at the design points to substantially accelerate the convergence of available
importance sampling methods that use information from one design point only. Implementation issues
related to the choice of importance sampling density and sample generation for reducing the variance of
the estimate are addressed. The computational e�ciency and improved accuracy of the proposed methods
is demonstrated by investigating the reliability of structures equipped with a tuned mass damper for which
multiple design points are shown to contribute signi®cantly to the value of the reliability integral. # 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Structural reliability analyses involve the development of accurate and e�cient methods for
computing multi-dimensional probability integrals. Two classes of methods are widely used to
compute structural reliability or its complement, the probability of failure. The ®rst class consists
of ®rst and second-order reliability methods (FORM and SORM) [1±5] which have been devel-
oped to provide economical computational tools for approximating structural reliability. The
second class consists of Monte-Carlo simulation methods [6], including importance sampling
methods, which can improve the reliability estimate to any desirable degree of accuracy at the
expense of more computational e�ort [7±15].
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FORM and SORM methods are applied to the classical reliability integral

I �
�

F

p���d� �1�

where F is the failure domain de®ned by the limit state function g��� as F � � 2 � : g���40f g
and p��� is the probability density function of �. These methods involve the computation of the
design point, which is de®ned as the point in the failure domain that is closest to the origin in the
standard Normal space after transformation of the original random variables [1]. Such a point
has the highest probability density among all points in the failure domain and is usually found as
the solution of a constrained optimization problem [16].
Another important class of multi-dimensional probability integrals, arising in the formulation

of the reliability analysis of uncertain dynamical systems subjected to stochastic excitations, is of
the form [15,17,18]

I �
�

�

F���p���d� �2�

where F��� and p��� are positive smooth functions of � 2 � with � being a subset of Rn, and
F��� represents the conditional probability of failure for the system given the uncertain
parameters �. Design points for this integral are de®ned equivalently as the points which
maximize the integrand either locally or globally. In this case, these `local' or `global' design
points are usually found as a solution to an unconstrained optimization problem.
The main contribution to the reliability integral in general comes from the neighborhood of

design points. When multiple design points exist, available optimization algorithms may converge
to a local design point and thus erroneously neglect the main contribution to the value of the
reliability integral from the global design point(s). Moreover, even if a global design point is
obtained, there are cases for which the contribution from other local or global design points may
be signi®cant. Importance sampling strategies for time-invariant problems with reliability inte-
grals of the form (1) having multiple design points have been addressed [7,11,14,19]. However,
implementation issues and methodologies for ®nding and treating multiple design points have not
been fully explored.
The focus of this work is the estimation of reliability integrals of the form (2) for uncertain

dynamical systems where multiple design points exist. An approximation based on asymptotics
which utilizes the information from multiple design points is studied. An e�cient method for
®nding all the design points within a speci®ed domain is also presented. In addition, an impor-
tance sampling method using information about the design points is proposed to improve the
accuracy of the asymptotic estimate to any desirable degree at the expense of more computation.
Implementation issues related to choice of importance sampling density and sample generation
are addressed. The reliability of multi-story buildings with one or more tuned mass dampers is
one example for which multiple design points are encountered and the contribution to the value
of the reliability integral from more than one design point is signi®cant. Numerical results cor-
responding to a single-degree-of-freedom structure and a 10-story shear building equipped
with a tuned mass damper (TMD), each with several uncertain parameters, are presented to
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demonstrate the computational e�ciency and improved accuracy of the proposed methods for
multiple design points.

2. Asymptotic approximation

Motivated by the work of Breitung [5] on asymptotic approximations of reliability integral (1),
Papadimitriou et al. [15] have derived an asymptotic approximation for integral (2). The idea is to
expand the logarithm of the integrand about the ``design points'' that correspond to the max-
imum of the integrand and then make use of Laplace's method on the resulting integral [20, 21].
In the case of multiple design points, designated by ��1; . . . ; ��M, the asymptotic approximation is
given by summing the contributions from the design points as

I � Î �
XM
i�1

Îi �3�

where Îi; i � 1; . . . ;M, is the ``asymptotic contribution'' to the reliability integral from the design
point ��i , given by

Îi � �2��n=2 F��
�
i �p���i ����������������
H���i �j
��q �4�

and H���j j is the determinant of the Hessian matrix H��� of ÿ ln�F���p����.
The quality of the approximation (3) with (4) depends on the decay of the function F���p��� in

the neighborhood of the design points, as well as the distance between the di�erent design points.
In fact, the error in the approximation for a single design point �� can be quanti®ed as follows.
First, de®ne the fractional error in the integrand of (2) by:

"��� � h��� ÿ ĥ���
ĥ���

�5�

where

h��� � F���p��� �6�

ĥ��� � h���� exp ÿ 1

2
��ÿ ���TH������ÿ ���

� �
�7�

Note that the approximation Î of (2) comes from integrating the local Normal approximation,
ĥ���, of h���. If "��� satis®es the condition:
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"����� ��4Kl �ÿ ��

 

3; as l ! 1; �8�

for some positive constant K, then by applying Laplace's method, it can be shown that the frac-
tional error in the integral (2) is given by:

Iÿ Î

Î
� O

1���
l
p
� �

! 0; as l ! 1; �9�

where l is the smallest eigenvalue of H����. Note that all the derivatives of "��� up to, and
including, the second derivatives are zero at ��. Therefore, if "��� is su�ciently smooth, the
bound in (8) is reasonable. This argument can be extended to multiple design points to also get an
asymptotic result as l � min

i
li ! 1, where li is the smallest eigenvalue of H���i �. Based on this

asymptotic result, for ®nite l the result (3) with (4) is taken as an approximation for reliability
integral (2).
Note that the approximation (3) and (4) can be applied directly to the integral (2) or it can be

applied to the integral resulting from transforming the original variables � to independent and
standard Normally distributed variables. While this transformation can always be done in prin-
ciple through the Rosenblatt transformation, in many cases the transformation cannot be per-
formed analytically and must be done numerically, which greatly increases the computational
requirements. However, even for those cases that it is simple to transform the integral in the
standard Normal space, it is a matter of preference as to which space the approximation should
be applied to, since, depending on the application, the approximation in the transformed stan-
dard Normal space may give less accurate results than the one obtained in the original space.
The computationally most expensive operation in the asymptotic method is the search for the

design points ��i . In some practical applications, only one local maximum exists inside the region
�, and so it can be readily obtained using a local maximization method such as the modi®ed-
Newton method. It should be noted, however, that when a good initial guess is not available, the
modi®ed-Newton method may not converge. In this case, a homotopy method can be used which
provides a robust way to ®nd at least one stationary point of the objective function [22]. In the
case of multiple maxima, more sophisticated optimization methods are required for ®nding all
local maxima.
A heuristic and robust method for ®nding multiple design points for reliability integrals of the

form (1) has recently been developed [19]. The main idea of the method is to impose a `barrier'
around known design points by modifying the limit state function. Subsequent optimization
using local optimization algorithms is then more likely to converge to new design points. How-
ever, the method is developed speci®cally for integral (1) in which a constrained global optimi-
zation is involved and cannot be applied directly to ®nd multiple design points for integral (2).
Relaxation techniques [22] have been developed for reliably obtaining multiple maxima points

��i for unconstrained optimization problems arising in the approximation (4) of reliability integral
(2). Once a stationary point is found using a local optimization method, the relaxation method is
applied to ®nd other stationary points as follows. Starting from a known stationary point, a tra-
jectory is followed along which the stationarity condition with respect to one of the coordinates is
relaxed while the rest remain enforced. A new stationary point is found when the relaxed condition
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is satis®ed again along the trajectory, whose type (minimum, maximum or saddle point) can be
checked using the Hessian matrix of the original objective function. Each of the n stationarity
conditions are relaxed in turn to produce a network of n trajectories from each stationary point.
By systematic branching of trajectories in this way from each stationary point as it is found, all of
the stationary points in a speci®ed domain of interest may be found.
The multiple design points in the numerical example have been found using the relaxation

scheme. It is noted, however, that the asymptotic approximation and importance sampling
methodology presented in this work do not depend on the search algorithm used and can be
applied once the design points are found.

3. Importance sampling

In the importance sampling procedure, simulations are applied to the integral

I �
�

�

F���p���
f��� f���d� �10�

where f��� is the importance sampling density chosen so that most of the samples ��k�,
k � 1; . . . ;N, are generated in the region or regions that contribute signi®cantly to the integral.
The estimate of I is given by the sample mean ~IN of � � Fp=f:

~IN � 1

N

XN
k�1
����k�� �11�

For large N the variance Var ~IN
� �

of ~IN is estimated by

~�2N � Var ~IN
� � � 1

N

XN
k�1
�����k�� ÿ ~IN�2 �12�

Since the main contribution to the integral comes from the domains in the neighborhood of the
design points ��1; . . . ;��M, it is reasonable to choose f��� to have signi®cant values at these design
points. In the case of a single design point ��, the importance sampling distribution was chosen to
have most probable value at the design point �� [15]. Generalizing this idea to the case of multiple
design points [7,11,14], the sampling distribution f��� is chosen to be of the form

f��� �
XM
i�1

wiGi��� �13�

where Gi���, i � 1; . . . ;M, are speci®ed probability density functions with most probable values
equal to the design point ��i , and the wi are the corresponding weights associated with the dis-
tribution, satisfying 04wi41, i � 1; . . . ;M, and

PM
i�1wi � 1.
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The choice of the distributions Gi and the weights wi are critical factors a�ecting the e�ciency
of the importance sampling procedure. It can be shown that choosing f��� to have the same tail
behavior as p��� guarantees that the variance of � � Fp=f is ®nite if F��� has ®nite variance under
p��� [7,14,15]. In particular, for a Normal distribution p��� with covariance matrix C, a ®nite
variance is guaranteed if the choice for the covariance matrix Ci of the Normal distribution Gi is
such that the matrix Ci ÿ C is positive semide®nite. The choice that may accelerate the con-
vergence of the importance sampling scheme is for Ci to be the inverse of the Hessian H���i �.
However, this choice can only be made in the cases for which the matrix Hÿ1���� ÿ C is positive
semi-de®nite so that it yields a ®nite variance. In all other cases, it is reasonable to let Ci �
l Hÿ1���� and choose l�l > 1� such that Ci ÿ C is positive semi-de®nite. An alternative choice
which always satis®es the semi-de®niteness of Ci ÿ C is Ci � C, the covariance matrix of the ori-
ginal Normal distribution. This choice provides computational advantages over the alternatives
when C is a diagonal matrix.
If p��� is not a Normal distribution, there are several ways of applying the importance sam-

pling technique which will guarantee a ®nite sample variance. One way is to map the original set
of variables � into a new set of independent Normal variables and apply importance sampling to
the transformed integral, as just described. Another way is to appropriately choose f��� in the
original parameter space depending on the distribution p���. One such choice for an independent
lognormal variable is given in [15] and it is used in the importance sampling estimate of the 2-
DOF system considered in the applications section.
The generation of samples for random variables � with joint probability density function f���

given by (13) could be carried out as follows [7]. To generate the kth sample, ��k�, k � 1; . . . ;N, a
discrete random variable u having 1; . . . ;Mf g as its state-space with corresponding probabilities
w1; . . . ;wMf g is simulated ®rst. If u � i; ��k� is generated from Gi. The number of samples Ni

generated from Gi is a Binomial random variable which has mean and variance equal to wiN and
wi�1ÿ wi�N, respectively, and therefore, on average, the number of samples generated around the
ith design point is proportional to the associated weight, wi. The variance �

2 of � � Fp=f is given
by

�2 �
�

�

����2f���d�ÿ I2 �14�

Substituting f��� �PM
i�1wiGi��� and I �PM

i�1wiIi, the variance of the importance sampling esti-
mate takes the form

Var ~IN
� � � �2

N
� 1

N
��2 �

XM
i�1

wi��i ÿ ���2 �
XM
i�1

wi�Ii ÿ I�2
" #

�15�

where

�2i �
�

�

����2Gi���d�ÿ I2i �16�

and
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Ii �
�

�

����Gi���d� �17�

are, respectively, the variance and mean of ���� under the sampling distribution Gi���, and �� �PM
i�1wi�i is the weighted average of the standard deviations �i.
Alternatively, the estimate for I can be carried out by independently computing the importance

sampling estimate ~Ii;Ni
for the integral Ii given in (17) with Ni now being a ®xed number. Sub-

stituting (13) into (10), the resulting estimate of I, denoted by ~I�N, is then given by

~I�N �
XM
i�1

wi
~Ii;Ni

�18�

Note that the number of samples used in estimating Ii is ®xed, whereas in the previous method,
the number of samples is a random variable whose statistics are speci®ed by the weights. Since the
estimates ~I�i;Ni

are independent and approximately Normal random variables with mean Ii and
variance �2i =Ni for large N1; . . . ;NM, the variance of the estimate ~I�N is given by

Var ~I�N
� � �XM

i�1
w2
i

�2i
Ni

�19�

Given the values of the weights so that f��� is speci®ed, the optimal values of Ni, i � 1; . . . ;M, are
those which minimize the Var ~I�N

� �
in (19) subject to the constraint

PM
i�1Ni � N. The minimization

yields

Ni � wi�iPM
j�1wj�j

N �20�

with the resulting variance given by

Var ~I�N
� � � ��2

N
�21�

Note that each standard deviation �i is usually unknown before the simulation process is begun.
Although one can estimate it with a few samples in a startup procedure, the error in the estimate
of the variance may distort the optimality and hence this choice is not suggested. It is interesting
to note that these results are analogous to those derived for strati®ed sampling [6].
An alternative choice is to take Ni � wiN. Substituting Ni � wiN into (19), the variance of ~I�N

under this choice of Ni is given by

Var ~I�N
� � � 1

N

XM
i�1

wi�
2
i �

1

N
��2 �

XM
i�1

wi��i ÿ ���2
" #

�22�

which is smaller than Var� ~IN� given in (15). Such reduction of variance is due to the deterministic
nature of the number of samples Ni used for estimating the integrals Ii. The variances of
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~IN and ~I�N coincide in the special case when all the Iis are equal. Note that the componentPM
i�1wi��i ÿ ��i�2=N in (22) and (15) is due to the di�erence in the variance �i of Ii among di�erent

design points, and it can be eliminated by using Ni given by (20).

3.1. Choice of weights

For given sample size N, the number of samples generated around the ith design point is pro-
portional to the associated weight wi. Thus, when choosing the value of wi, one should take into
consideration the relative importance of the ith design point in contributing to the value of the
reliability integral during the simulation process.
One reasonable approach is to choose the weights proportional to the contribution to the

reliability integral of the integral over the neighborhood of the ith design point. Although the
integral around the ith design point is unknown before the sampling process, it can be estimated
approximately using the asymptotic contribution, ~Ii, of the ith design point to the reliability
integral. Thus, the weights can be chosen in the form

wi � ÎiPM
j�1Îj

; i � 1; . . . ;M �23�

where each Îi; i � 1; . . . ;M, is given by (4). This choice is the same as the one proposed in [11] for
the classical reliability integral (1).
Another reasonable approach is to choose the weights to be proportional to the value of the

integrand F���p��� of the original reliability integral evaluated at the design point ��i . Using the
asymptotic result (4), the weights can be written in the form

wi � F���i �p���i �PM
j�1

F���j �p���j �
�

Îi

���������������
H���i �
�� ��q

PM
j�1

Îj

���������������
H���j �
��� ���r ; i � 1; . . . ;M �24�

where Îi is the asymptotic contribution to the value of the reliability integral from the ith design
point, and

����������������
H���i �
�� ��q

accounts for the curvature of the integrand function F���p��� evaluated at
the ith design point. This choice applied to the reliability integral (2) is similar to the choice pro-
posed in [7] for the importance sampling technique to account for the multiple design points
encountered in the classical reliability integral (1).
Ideally, the optimal values of the weights should be selected as those which minimize the

variance �2�f�=N, where �2�f� is given in (14). Using (13), the variance �2 in (14) takes the
form:

�2�f� �
XM
i�1

wi

�
�

F���p���
f���

� �2
Gi���d�ÿ I2 �25�
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An approximate expression for the optimal weights is derived next which sheds lights on how the
weights could be chosen properly. Since the second term in (25) is constant, minimizing �2 leads
to minimizing the ®rst sum as a function of the weights. In the following, let the probability
density function Gi be Normal with mean ��i and covariance matrix Ci. Note that for the impor-
tance sampling distribution f��� corresponding to the optimal choice of weights, the quotient
Fp=f would be relatively ¯at in the neighborhood of the design points ��i , i � 1; . . . ;M, when
compared to Gi which is peaked at the design point ��i . For well-separated design points, the main
contribution to the ith integral within the sum in (25) then comes from the integration over the
neighborhood of the ith design point, where f��� � wiGi���. Thus, approximating the ith integral
in the sum of (25) with an integral over the neighborhood Di of ��i and replacing f in the
denominator of the resulting integral with wiGi, we have�

�

F���p���
f���

� �2
Gi���d� � 1

w2
i

�
Di

F���2p���2
Gi��� d� �26�

Applying the approximation (4) to the integral in (26) with design point ��i , it can be readily
shown that

�
�

F���p���
f���

� �2
Gi���d� � Î2i 


2
i

w2
i

�27�

where Îi is the asymptotic contribution to the reliability integral I, given by (4), and


2i �
H���i �
�� �� ��������

Cij j
p��������������������������������

2H���i � ÿ Cÿ1i

�� ��q �28�

in which H���i � is the same Hessian matrix as the one used in (4). The approximation in (27) is
valid for the matrix �2H���i � ÿ Cÿ1i � being positive de®nite so that ��i is a design point of the
integrand in (26).
Substituting (27) into (25) and minimizing the resulting expression for �2�f� with respect to wi,

i � 1; . . . ;M, subject to the constraints
PM

i�1wi � 1, yields the following approximation for the
optimal weights:

wi;opt � Îi
iPM
j�1Îj
j

; i � 1; . . . ;M �29�

Eq. (29) suggests the optimal weights be chosen proportional to the product of the asymptotic
contribution from the ith design point and the parameter 
i. The ®rst factor accounts for the fact
that design points having higher asymptotic contributions to the reliability integral should be
given higher weights, and hence higher number of samples generated in their neighborhood. To
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understand the signi®cance of the second factor, 
i, consider two design points ��i and �
�
j having

exactly the same asymptotic contribution Îi � Îj, and assume that Gi and Gj have the same cov-
ariance matrix C. The number of samples Ni � wiN generated around each design point using the
Normal distribution with the same covariance matrix C depends also on the curvature of Fp,
given by H���� at the design point. The higher the curvature of Fp, the more peaked the function
Fp is as compared to the importance sampling distribution Gi��� around the design point, and
therefore, the more the number of samples needed to get a good importance sampling estimate of
the integral over the region corresponding to the design point. In the limiting case for which
H���i � � Cÿ1i , (29) gives 
i � 1 which implies that the choice of weight for the ith design point is
independent of 
i. In fact, had the function Fp been exactly represented by a Normal distribution
centered at ��i , only one sample would be su�cient to give the exact value.
Note that when H���i � � Cÿ1i , i � 1; . . . ;M, (28) gives 
i � 1 for all i, and hence the approx-

imate optimal choice of weights by (29) coincides with the choice in (23) in which the weights are
proportional to the asymptotic contributions.

4. Applications

The accuracy and e�ciency of both the asymptotic approximation and the importance sam-
pling methodology for estimating reliability integrals of the form (2) with multiple design points
are investigated by computing the failure probabilities of a passively-damped structure subjected
to a stationary zero-mean Gaussian white-noise base excitation. The ®rst example considers a
two-degree-of-freedom system which helps to graphically illustrate the design points and their
contributions to the reliability integrals. The second example considers a 10-DOF shear building
which presents a problem of practical interest as numerical integration becomes prohibitive
because of the high dimension of the reliability integral encountered.
In both examples, for a given �, failure is assumed to occur when the stationary portion of a

response quantity r�t;�� exceeds some critical level b over a duration T. For a high threshold level
b, it can be assumed that the events of crossing such a level are independent, in which case the
conditional failure probability F��� is approximated, using results from random vibration theory
[23], by

F��� � 1ÿ exp�ÿ2����T� �30�

where, for zero-mean Gaussian processes, the expected rate of upcrossing ���� through level b for
a given � is

���� � �_r���
2��r��� exp

ÿb2
2�2r ���
� �

�31�

and �r��� and �_r��� are, respectively, the conditional standard deviation of response r�t;�� and its
time derivative for a given �. Using the Theorem of Total Probability, the unconditional failure
probability I of the system is given by the integral (2).
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4.1. Two-DOF system

Consider a two degree-of-freedom (DOF) system consisting of a structure with a tuned mass
damper (TMD) speci®ed by the following parameters (see Fig. 1): mass of structure m0, natural
frequency of structure !0 �

�������������
k0=m0

p
, structural damping ratio �0 � c0=2

�����������
k0m0

p
, mass ratio

� � m1=m0, ®xed-base natural frequency of TMD !1 �
�������������
k1=m1

p
and TMD damping ratio

�1 � c1=2
�����������
k1m1

p
. The sti�ness k0 and damping ratio �0 of the structure are assumed to be

uncertain. They are parameterized by k0 � k̂0�1 and �0 � �̂0�2, where k̂0 and �̂0 are the most
probable value of k0 and �0, respectively, and �1 and �2 are dimensionless quantities representing
the uncertain parameters of the system. The uncertainties in k0 and �0 are then quanti®ed by
choosing �1 and �2 to be independent and lognormally distributed with most probable value
(MPV) �̂1 � �̂2 � 1, and standard deviation 
1 and 
2, respectively. Equivalently, 
1 and 
2 mea-
sure the level of uncertainties of k0 and �0, respectively. The other parameters of the system are
assumed to be deterministic. The following values for the system parameters are assumed:

m0 � 1� 105 kg, �̂0 � 1%, � � 1%, �1 � 1% and !1 � 0:8 !̂0, where !̂0 �
�������������
k̂0=m0

q
� 5� rad=s

is the MPV of the frequency of the structure corresponding to the MPV of k0.

The response quantity of interest r�t; �� is the displacement of the structure relative to the
ground. The threshold value b in (31) is assumed to be four times the standard deviation of the
displacement r�t;�� of the nominal structure in the absence of the TMD, i.e. when � � 1 and
� � 0. The duration T is taken to be 10 times the natural period of the nominal structure in the
absence of the TMD. For this example, only the asymptotic approximation for the system failure
probability I is computed and compared with the ``exact'' value obtained by numerical integra-
tion.
In all the cases considered herein, the level of uncertainty of �0 is ®xed at 
2 � 0:3. Results are

presented for three levels of uncertainty of k0, namely 
1 � 0:25, 0.4 and 0.5, which are desig-
nated, respectively, by Case 1, 2 and 3. It is found that for all of these three cases there exist two
design points. To gain insight into the contribution of the integral over the neighborhood of the
design points for di�erent levels of uncertainty 
1, the variation of the integrand function

Fig. 1. Two-DOF system.
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F���p��� is plotted in Fig. 2(a)±(c) for Cases 1, 2 and 3, respectively. For illustration purposes, the
design point near the MPV, �̂ � �1; 1�, is designated as design point 1 and denoted by ��1, while
the other design point farther away from the MPV is designated as design point 2 and denoted by
��2. Table 1 shows the values of the design points ��1 and �

�
2 for Cases 1, 2 and 3. Each column in

the table contains the two components of each design point in the parameter space �. It is noted
that the di�erence in the ®rst component between ��1 and ��2 is larger than that for the second
component which is indicative of the fact that the failure probability is more sensitive to uncer-
tainty in the sti�ness parameter than it is to the damping ratio.
To get insight into the relative contribution of the design points to the failure probability I for

di�erent levels of uncertainty, the fractional asymptotic contribution of a design point ��i , de®ned
here as �i � Îi=Î, is computed. The fractional asymptotic contribution re¯ects the relative con-
tribution of the integral from the neighborhood of the design point and hence the importance of
the design point in reliability computations. The fractional asymptotic contribution �i , i � 1; 2,

Fig. 2. Integrand F���p��� for Cases 1, 2 and 3.

124 S.K. Au et al. / Structural Safety 21 (1999) 113±133



and the total asymptotic approximation Î � Î1 � Î2 are shown in Table 2 for the three cases.
Column 6 in Table 2 reports the results obtained by transforming the random variables �1 and �2
to standard Normal ones and then applying the asymptotic approximation to the transformed
integral over the standard Normal space. For comparison purposes, the `exact' values of the
failure probabilities based on numerical integration are also reported in this table.
It is seen from Fig. 2 and Table 2 that as 
1 increases from 0.25 to 0.5, �1 decreases from 90 to

31%, while �2 increases from 10 to 69%. This means that as the level of uncertainty in the sti�-
ness parameter �1 increases, the contribution of the integral over the neighborhood of design
point 1 to the total probability of failure reduces, and hence design point 1 is expected to be less
important in accounting for the total failure probability. On the other hand, as the level of
uncertainty increases, the contribution of the integral around the neighborhood of the design
point 2 is important in obtaining more accurate estimates of the failure probability. The asymp-
totic estimate in the original space of random variables is a very good approximation to the value
of the reliability integral, provided that both design points are used. It can be deduced from Table
2 that the estimate from one design point only can be inaccurate, especially if the single design
point found from an optimization algorithm is the one corresponding to the smaller �i. Finally,
comparing columns 5 and 6 in Table 2, it can be seen that depending on the value of 
1, the
approximation in the transformed standard Normal space may give worse or better estimates
than the approximation in the original space.

4.2. 10-DOF shear building with TMD

Consider a 10-story shear building equipped with a tuned mass damper at the roof. The
building is modeled by a 10-DOF spring-mass-damper system and the TMD is modeled by a
SDOF mass-spring-damper attached to the 10th DOF of the building, as shown in Fig. 3. The
lumped mass of all stories are mi � 1� 105 kg, i � 1; . . . ; 10. The interstory sti�ness ki of all the
stories are assumed to be uncertain and they are parameterized by ki � k̂i�i, i � 1; . . . ; 10, where

Table 2

Asymptotic results for 2 DOF system

Case 
1 �1 �2 Î (original) Î (normal) I (integration)

1 0.25 0.90 0.10 4.85�10ÿ3 5.09�10ÿ3 5.02�10ÿ3
2 0.40 0.48 0.52 6.75�10ÿ3 6.90�10ÿ3 7.21�10ÿ3
3 0.50 0.31 0.69 9.00�10ÿ3 8.93�10ÿ3 9.29�10ÿ3

Table 1
Design points of study cases for 2 DOF system

Case 1 Case 2 Case 3

��1 ��2 ��1 ��2 ��1 ��2

0.935 0.551 0.917 0.510 0.912 0.492

0.681 0.793 0.684 0.817 0.684 0.828

S.K. Au et al. / Structural Safety 21 (1999) 113±133 125



each k̂i � 180� 106 N/m, is the most probable value of ki and the �is forming the vector � �
��1; . . . ; �10�T are nondimensional uncertain parameters modeled by random variables. The nom-
inal model is de®ned here as the 10-DOF building model with parameters �i � 1 for all i when the
TMD is not installed. The fundamental frequency of the nominal model is computed to be about
1 Hz. To account for the uncertainty of the interstory sti�nesses as well as their statistical corre-
lation, the uncertain parameters �i are assumed to be Normal with mean �̂i � 1 and correlation
structure described by the exponential decay law

E ��i ÿ �̂i���j ÿ �̂j�
h i

� 
2 exp ÿ�jÿ i�2=l2� �
; i; j � 1; . . . ; 10 �32�

where 
 is the standard deviation of each component �i in the random vector �, and l is a char-
acteristic story-correlation number. It can be readily seen that 
 is the coe�cient of variation of
ki, i � 1; . . . ; 10. Chosen values for 
 will be small so that the probability that any �i is negative
will be negligible. The correlation number l is chosen to be l � 3 which roughly implies a sig-
ni®cant correlation between interstory sti�nesses within 3 stories apart.
The 10-DOF building is assumed to be Rayleigh damped with damping matrix

D � �M� �K���, where M is the mass matrix and K��� is the sti�ness matrix of the 10-DOF
building for a given �; � and � are the Rayleigh damping parameters and are assumed to be such
that the nominal building has 1% modal damping in the ®rst and second modes of vibration. The
mass of the TMD is 1% of the total mass of the building, and the sti�ness of the TMD is such
that the ®xed-base natural frequency of the TMD is 0.8 of the ®rst mode natural frequency of the
nominal building, representing a nearly-tuned condition. The ®xed-base TMD is assumed to have
1% of critical damping. The response quantity of interest, r�t;��, is the roof displacement relative
to the ground.

Fig. 3. 10-DOF shear building model with TMD.
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The reliability computations are carried out in the transformed space of independent standard
Normal random variables. For this, the set of correlated random variables � are transformed to a
set of independent standard Normal random variables � � ��1; . . . ; �10�T. Asymptotic and
importance sampling techniques for evaluating I are then applied to the transformed integral with
respect to � over the 10-dimensional space of �.

4.2.1. Asymptotic approximation

Three cases are considered, designated as Case 1, 2 and 3, which correspond to di�erent levels
of uncertainty in the interstory sti�nesses with coe�cient of variation 
 � 0:2, 0.25 and 0.3,
respectively. It is found that two design points, designated by ��1 and ��2, exist in all of the three
cases. The corresponding design points in the transformed parameter space are denoted by ��1 and
��2. The design points for the three cases in the original parameter space � are tabulated in Table
3. Each column in the table shows the 10 components of the design point. Observe that in all of
the cases only the ®rst two components of ��1 are signi®cantly di�erent from their most probable
values, while the ®rst four or ®ve components of ��2 are found to be signi®cantly di�erent from
their most probable values. Those components which are signi®cantly di�erent from their most
probable values are usually the sensitive parameters of the uncertain system. It is interesting to
note that in all three cases, the design points are approximately the same for di�erent levels of
uncertainty considered, especially for the second design point ��2.
Given the design points, the asymptotic approximation Î to I can readily be computed as

Î � Î1 � Î2, where Î1, and Î2 are the asymptotic contributions from ��1 and ��2 according to (4).
The fractional asymptotic contribution, �i � Îi=Î, of each design point and the total asymptotic
approximation Î are tabulated in Table 4. Note that as 
 increases from 0.2 to 0.3, �1 decreases
from 0.71 in Case 1 to 0.37 in Case 3, while �2 increases from 0.29 to 0.63. Assuming that the
exact values of failure probabilities follow a similar trend, this means that as the level of uncer-
tainty in the interstory sti�nesses increases, the contribution of the integral over the neighbor-
hood of ��1 to the value of I reduces, and hence ��1 is expected to be less important in the
reliability computations. On the other hand, as the level of uncertainty increases, ��2 is more
important in obtaining a more accurate estimate of failure probability. Coupling this with the fact

Table 3
Design points for 10-DOF shear building

Case 1 Case 2 Case 3

��1 ��2 ��1 ��2 ��1 ��2

0.67 0.39 0.59 0.38 0.54 0.37
0.79 0.40 0.75 0.39 0.73 0.38

0.95 0.51 0.95 0.50 0.97 0.50
1.07 0.65 1.11 0.65 1.15 0.65
1.13 0.78 1.18 0.79 1.22 0.79

1.12 0.87 1.16 0.88 1.20 0.88
1.09 0.93 1.11 0.93 1.14 0.93
1.05 0.95 1.06 0.96 1.07 0.96

1.01 0.97 1.01 0.97 1.02 0.97
0.99 0.98 0.99 0.98 0.98 0.98
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that ��2 is far away from the most probable value and hence has small plausibility, one sees the
intuitive fact that as the level of uncertainty increases, models with small plausibilities may
assume great importance in reliability calculations. These conclusions are similar to those in the
previous example.

4.2.2. Importance sampling simulation

The accuracy and convergence of the importance sampling technique proposed in this study is
explored. To investigate the importance of utilizing information from both of the design points in
the importance sampling process, simulations are carried out separately for the following three
choices of sampling distribution given in (13): (1) w1 � 1 and w2 � 0, (2) w1 � 0 and w2 � 1, and
(3) w1 � �1 � Î1=�Î1 � Î2� and w2 � �2 � Î2=�Î1 � Î2�. Choices (1) and (2) correspond to the
choice of sampling distribution when only one design point, ��1 for choice (1) and ��2 for choice
(2), is found. Choice (3) is the proposed sampling distribution that utilizes information from both
design points. The number of samples Ni for the ith design point is chosen to be Ni � wiN,
i � 1; 2. The functions Gi��� for (13) are chosen to be Normally distributed, with most probable
value equal to ��i corresponding to the ith design point and covariance matrix equal Ci to the
identity matrix I, that is, the covariance matrix corresponding to that of the original distribution
after transformation to the �-space. It is worth noting that the choice Ci � Hÿ1���i � was not used
because it does not satisfy the conditions for getting a bounded variance of the estimate for all
numerical cases considered in this example.
Fig. 4(a)±(c) shows the importance sampling estimates as a function of number of samples for

Cases 1, 2 and 3, respectively. The corresponding coe�cients of variation, cov� ~IN� � ~�N= ~IN of
the estimate ~IN, where ~�N is computed based on (12), are respectively plotted in Fig. 4(d)±(f). The
coe�cient of variation is often used to assess the error in simulation results and provides
guidance in terminating the simulation process once the error is below a speci®ed threshold.
Results using up to 10,000 samples are shown in the ®gures. The dashed, dotted and solid lines
correspond to sampling histories for choices (1), (2) and (3), respectively. For comparison pur-
poses, the asymptotic contributions Î1, Î2 and Î � Î1 � Î2 are also marked in these ®gures with a
square, diamond and circle, respectively. Exact solutions for the reliability integrals are not
feasible in this example due to the large dimension of the integrals. Simulation results from all
the three choices of sampling distribution using 100,000 samples, however, show that they all
practically converge to the same value. For discussion purposes, such a value can be taken as the
exact solution and is marked with star in the ®gure for each case.
From Fig. 4, it is seen that the asymptotic approximation Î is a good approximation to the

failure probability I, while asymptotic approximations using only one design point, Î1 or Î2, may
not be necessarily close to I, depending on the level of uncertainty 
. From the sampling histories

Table 4
Study cases and results for 10-DOF shear building

Case 
 �1 �2 Î

1 0.20 0.71 0.29 4.77�10ÿ3
2 0.25 0.47 0.53 1.35�10ÿ2
3 0.30 0.37 0.63 2.82�10ÿ2
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corresponding to the di�erent choices of sampling distribution, it is observed that simulation
results using the sampling distribution peaked at a design point having high asymptotic con-
tribution tend to have less variance. This can also be inferred from the coe�cients of variation.
Fig. 4 also shows that the coe�cient of variation for Choice (3) is always smaller than those for
Choices (1) and (2). Also, the largest coe�cient of variation among Choices (1) and (2) is
approximately an order of magnitude greater than that of Choice (3). It should be noted that
conventional optimization methods used to search for a design point may yield a local minimum

Fig. 4. Simulation histories for Cases 1, 2 and 3. & IÃ1; ^ IÃ2; * IÃ; * Exact.
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corresponding to the design point with the least contribution to the asymptotic estimate of the
reliability integral. The importance sampling simulation based on this design point would lead to
large variance and, hence, would lose its e�ciency. In all the cases, the importance sampling
estimates using Choice (3) show faster convergence than those using Choice (1) or (2), demon-
strating the e�ciency of the proposed importance sampling methodology.
Note that the importance sampling estimates using Choice (1) or Choice (2) could be biased

when N is small. For example, in Case 2, when N is about 1000, the estimate by Choice (1) is
signi®cantly smaller than the exact value. Such di�erence, however, is not re¯ected in the esti-
mated coe�cient of variation. Indeed, the initial portion of the estimated coe�cient of variation
for N less than 1000 is quite small which could lead to the erroneous conclusion that the impor-
tance sampling estimate has converged to within 6%. In this case, where N is not large enough,
the estimated coe�cient of variation is much smaller than the actual one, and the former can no
longer give a faithful indication of the accuracy of the importance sampling estimate [10,24].
Bias is more likely to occur for smaller sampling size N when design points distant from the

center of the sampling distribution and of signi®cant contribution are not included in the sam-
pling distribution. In such a case, samples generated according to the sampling distribution which
excludes the design points of signi®cant contribution tend to cluster around the center of the
sampling distribution. The chance of having samples generated in the neighborhood of the
excluded design points is small when N is small, and thus the contributions of the excluded design
points to the reliability integral are not re¯ected in the simulation, thereby causing the bias in the
importance sampling estimate.
For su�ciently large N, however, there could be a small number of samples generated in the

neighborhood of the excluded design points which may result in sudden `jumps' in the plots of the
estimate, as can be observed in the sampling histories and coe�cient of variation plots for Choi-
ces (1) and (2) in Fig. 4. Such jumps occur because the quotient F���p���=f��� has a very high
value in the neighborhood of an excluded design point, as the denominator, f���, has negligible
value there while the numerator, F���p���, takes on signi®cant values in the neighborhood of the
design point. The existence of jumps in a plot of the estimates for increasing sample size may
indicate the existence of design points of high contributions which are excluded in the sampling
distribution.
When an importance sampling method is applied using only one design point, a large variance

in the sampling history and a signi®cant di�erence in the importance sampling estimate ~IN from
the asymptotic approximation can be a good indication of the existence of other design points of
high contribution to the reliability integral. In the case where large variance is observed using the
®rst design point found, searching for the other design points may be worthwhile, as can be seen
in Fig. 4 by the signi®cant improvement in the convergence behavior of the importance sampling
technique when information from both design points is used to choose the importance sampling
density.
The e�ect of the choice of weights wi on the e�ciency of the proposed importance sampling

estimate is investigated next. A parametric study on the variance �2 of ���� � F���p���=f��� is
performed with respect to the weight w1 associated with the ®rst design point, while w2 � 1ÿ w1.
The variance �2 directly a�ects the variance of the importance sampling estimate using Choice (3)
since the variance of the latter is �2=N. The values of �2 have been estimated by importance
sampling simulation using Choice (3) with N � 10; 000 samples. For comparison purposes, the

130 S.K. Au et al. / Structural Safety 21 (1999) 113±133



ratio of the variance �2 for a given w1 to the smallest variance �20 attained at the optimal value of
w1 are plotted in Fig. 5 for Cases 1, 2 and 3. Note that the cases w1 � 0 and w1 � 1 correspond to
simulations using Choice (2) and Choice (1), respectively. From these ®gures, it is seen that the
variance ratio could be orders of magnitude greater than 1 when w1 � 0 [Choice (2)] or w1 � 1
[Choice (1)]. For example, in Case 1, when w1 � 0, �2=�20 � 50. This means on average it takes
about 50 times more samples for Choice (2) than Choice (3) with w1 � 0:6, w2 � 0:4 to achieve
the same variance in the importance sampling estimate.
The variation of the variance ratio shown in these ®gures demonstrates a convex trend and

hence that an optimal choice of the weights is possible to minimize the variance. The values of w1

based on the choices speci®ed by (23), (24) and (29) are also shown in the ®gures as a square,
diamond and circle, respectively. The approximate optimal choice given by (29) and the choice

Fig. 5. Variation of variance with weight for Cases 1, 2 and 3. & Eq. (23); ^ Eq. (24); * Eq. (29).
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based on the integrand value at the design points as given by (24) are quite close to the actual
optimal value where the variance is minimized. The choice by (23) based on the asymptotic con-
tributions of design points appears to be sub-optimal in these cases. It is noted, however, in the
examples considered, the variation of variance is not signi®cant when w1 varies near the optimal
value. This implies that for the cases studied, the importance sampling procedure is almost opti-
mized in terms of the weights if the weights are chosen either according to (23), (24) or (29).

5. Conclusions

Asymptotic expansions and importance sampling techniques have been developed for relia-
bility integrals arising in reliability analysis of uncertain dynamical systems when multiple design
points exist. The accuracy of the asymptotic approximation of a reliability integral can be
improved to any desired level by generating a su�ciently large number of samples using the
importance sampling method. However, bias in the importance sampling estimate can occur for
®nite sample sizes if all the design points are not properly accounted for in the sampling dis-
tribution. The sampling distribution used in the importance sampling procedure presented herein
is a multimodal probability distribution which is peaked near the multiple design points. Samples
generated according to such a distribution are clustered around the design points which give sig-
ni®cant contribution to the reliability integral. The choice of weights used in the sampling dis-
tribution has been discussed. An approximate formula for the optimal weights has been derived
which expresses the importance of the design points in terms of their asymptotic contribution and
the curvature of the integrand at the design point.
Numerical examples on structures equipped with a tuned mass damper, for which two design

points are encountered, demonstrate the applicability and e�ciency of the proposed techniques.
Studies on the contribution of design points to the reliability integrals re¯ect the fact that as the
level of uncertainty increases, models with small plausibilities can assume great importance in
reliability calculations, which agrees with intuition.
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